顶点图合成探针与重用距离分布关系的表征

K. Ibrahim, E. Strohmaier
{"title":"顶点图合成探针与重用距离分布关系的表征","authors":"K. Ibrahim, E. Strohmaier","doi":"10.1109/ICPP.2010.43","DOIUrl":null,"url":null,"abstract":"Characterizing a memory reference stream using reuse distance distribution can enable predicting the performance on a given architecture. Benchmarks can subject an architecture to a limited set of reuse distance distributions, but it cannot exhaustively test it. In contrast, Apex-Map, a synthetic memory probe with parameterized locality, can provide a better coverage of the machine use scenarios. Unfortunately, it requires a lot of expertise to relate an application memory behavior to an Apex-Map parameter set. In this work we present a mathematical formulation that describes the relation between Apex-Map and reuse distance distributions. We also introduce a process through which we can automate the estimation of Apex-Map locality parameters for a given application. This process finds the best parameters for Apex-Map probes that generate a reuse distance distribution similar to that of the original application. We tested this scheme on benchmarks from Scalable Synthetic Compact Applications and Unbalanced Tree Search, and we show that this scheme provides an accurate Apex-Map parameterization with a small percentage of mismatch in reuse distance distributions, about 3% in average and less than 8% in the worst case, on the tested applications.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Characterizing the Relation Between Apex-Map Synthetic Probes and Reuse Distance Distributions\",\"authors\":\"K. Ibrahim, E. Strohmaier\",\"doi\":\"10.1109/ICPP.2010.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing a memory reference stream using reuse distance distribution can enable predicting the performance on a given architecture. Benchmarks can subject an architecture to a limited set of reuse distance distributions, but it cannot exhaustively test it. In contrast, Apex-Map, a synthetic memory probe with parameterized locality, can provide a better coverage of the machine use scenarios. Unfortunately, it requires a lot of expertise to relate an application memory behavior to an Apex-Map parameter set. In this work we present a mathematical formulation that describes the relation between Apex-Map and reuse distance distributions. We also introduce a process through which we can automate the estimation of Apex-Map locality parameters for a given application. This process finds the best parameters for Apex-Map probes that generate a reuse distance distribution similar to that of the original application. We tested this scheme on benchmarks from Scalable Synthetic Compact Applications and Unbalanced Tree Search, and we show that this scheme provides an accurate Apex-Map parameterization with a small percentage of mismatch in reuse distance distributions, about 3% in average and less than 8% in the worst case, on the tested applications.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

使用重用距离分布来表征内存引用流可以预测给定体系结构上的性能。基准测试可以使体系结构服从于一组有限的重用距离分布,但是它不能详尽地测试它。相比之下,Apex-Map是一种具有参数化局部性的合成内存探针,可以更好地覆盖机器使用场景。不幸的是,将应用程序内存行为与Apex-Map参数集联系起来需要很多专业知识。在这项工作中,我们提出了一个数学公式来描述Apex-Map和重用距离分布之间的关系。我们还介绍了一个过程,通过这个过程,我们可以自动估计给定应用程序的Apex-Map局部性参数。此过程为Apex-Map探测找到最佳参数,生成与原始应用程序相似的重用距离分布。我们在可伸缩合成紧凑应用程序和不平衡树搜索的基准测试中测试了该方案,结果表明该方案提供了准确的Apex-Map参数化,并且在测试的应用程序中重用距离分布的不匹配百分比很小,平均约为3%,最坏情况下小于8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the Relation Between Apex-Map Synthetic Probes and Reuse Distance Distributions
Characterizing a memory reference stream using reuse distance distribution can enable predicting the performance on a given architecture. Benchmarks can subject an architecture to a limited set of reuse distance distributions, but it cannot exhaustively test it. In contrast, Apex-Map, a synthetic memory probe with parameterized locality, can provide a better coverage of the machine use scenarios. Unfortunately, it requires a lot of expertise to relate an application memory behavior to an Apex-Map parameter set. In this work we present a mathematical formulation that describes the relation between Apex-Map and reuse distance distributions. We also introduce a process through which we can automate the estimation of Apex-Map locality parameters for a given application. This process finds the best parameters for Apex-Map probes that generate a reuse distance distribution similar to that of the original application. We tested this scheme on benchmarks from Scalable Synthetic Compact Applications and Unbalanced Tree Search, and we show that this scheme provides an accurate Apex-Map parameterization with a small percentage of mismatch in reuse distance distributions, about 3% in average and less than 8% in the worst case, on the tested applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信