{"title":"加性Schwarz预调节器的局部正交分解方法","authors":"S. C. Brenner, J. C. Garay, L. Sung","doi":"10.1553/ETNA_VOL54S234","DOIUrl":null,"url":null,"abstract":"We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim, [Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014), pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber, Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz domain decomposition preconditioners for the resulting discrete problems.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Additive Schwarz preconditioners for a localized orthogonal decomposition method\",\"authors\":\"S. C. Brenner, J. C. Garay, L. Sung\",\"doi\":\"10.1553/ETNA_VOL54S234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim, [Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014), pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber, Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz domain decomposition preconditioners for the resulting discrete problems.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/ETNA_VOL54S234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL54S234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additive Schwarz preconditioners for a localized orthogonal decomposition method
We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim, [Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014), pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber, Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz domain decomposition preconditioners for the resulting discrete problems.