{"title":"普朗克常数的隐含结构","authors":"D. Humpherys","doi":"10.24018/ejphysics.2022.4.6.227","DOIUrl":null,"url":null,"abstract":"Max Planck derived natural units of length, mass, and time on the assumption that each of the universal constants embodies natural units in its unit dimensions. The four natural units and dimensions comprising Planck’s constant infuse more granular elements into the formulas enriching our understanding of the physical constants and the phenomena they represent. The natural units offer a consistent language for comparing classical and quantum mechanical formulas.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Implicit Structure of Planck’s Constant\",\"authors\":\"D. Humpherys\",\"doi\":\"10.24018/ejphysics.2022.4.6.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Max Planck derived natural units of length, mass, and time on the assumption that each of the universal constants embodies natural units in its unit dimensions. The four natural units and dimensions comprising Planck’s constant infuse more granular elements into the formulas enriching our understanding of the physical constants and the phenomena they represent. The natural units offer a consistent language for comparing classical and quantum mechanical formulas.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2022.4.6.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2022.4.6.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Max Planck derived natural units of length, mass, and time on the assumption that each of the universal constants embodies natural units in its unit dimensions. The four natural units and dimensions comprising Planck’s constant infuse more granular elements into the formulas enriching our understanding of the physical constants and the phenomena they represent. The natural units offer a consistent language for comparing classical and quantum mechanical formulas.