{"title":"从手机数据中识别幸福","authors":"Andrey Bogomolov, B. Lepri, F. Pianesi","doi":"10.1109/SocialCom.2013.118","DOIUrl":null,"url":null,"abstract":"In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Happiness Recognition from Mobile Phone Data\",\"authors\":\"Andrey Bogomolov, B. Lepri, F. Pianesi\",\"doi\":\"10.1109/SocialCom.2013.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.