{"title":"红细胞(RBC)聚集及其对微血管血液非牛顿性质的影响","authors":"C. Murali, P. Nithiarasu","doi":"10.1515/jmmm-2016-0157","DOIUrl":null,"url":null,"abstract":"Abstract A robust computational model is proposed to investigate the non-Newtonian nature of blood flow due to rouleaux formation in microvasculature. The model consists of appropriate forces responsible for red blood cell (RBC) aggregation in the microvasculature, tracking of RBCs, and coupling between plasma flow and RBCs. The RBC aggregation results have been compared against the available data. The importance of different hydrodynamic forces on red blood cell aggregation has been delineated by comparing the time dependent path of the RBCs. The rheological changes to the blood flow have been investigated under different shear rates and hematocrit values and quantified with and without RBC aggregation. The results obtained in terms of wall shear stress (WSS) and blood viscosity indicate a significant difference between Newtonian and powerlaw fluid assumptions.","PeriodicalId":359168,"journal":{"name":"Journal of Modeling in Mechanics and Materials","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Red blood cell (RBC) aggregation and its influence on non-Newtonian nature of blood in microvasculature\",\"authors\":\"C. Murali, P. Nithiarasu\",\"doi\":\"10.1515/jmmm-2016-0157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A robust computational model is proposed to investigate the non-Newtonian nature of blood flow due to rouleaux formation in microvasculature. The model consists of appropriate forces responsible for red blood cell (RBC) aggregation in the microvasculature, tracking of RBCs, and coupling between plasma flow and RBCs. The RBC aggregation results have been compared against the available data. The importance of different hydrodynamic forces on red blood cell aggregation has been delineated by comparing the time dependent path of the RBCs. The rheological changes to the blood flow have been investigated under different shear rates and hematocrit values and quantified with and without RBC aggregation. The results obtained in terms of wall shear stress (WSS) and blood viscosity indicate a significant difference between Newtonian and powerlaw fluid assumptions.\",\"PeriodicalId\":359168,\"journal\":{\"name\":\"Journal of Modeling in Mechanics and Materials\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modeling in Mechanics and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmmm-2016-0157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modeling in Mechanics and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmmm-2016-0157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Red blood cell (RBC) aggregation and its influence on non-Newtonian nature of blood in microvasculature
Abstract A robust computational model is proposed to investigate the non-Newtonian nature of blood flow due to rouleaux formation in microvasculature. The model consists of appropriate forces responsible for red blood cell (RBC) aggregation in the microvasculature, tracking of RBCs, and coupling between plasma flow and RBCs. The RBC aggregation results have been compared against the available data. The importance of different hydrodynamic forces on red blood cell aggregation has been delineated by comparing the time dependent path of the RBCs. The rheological changes to the blood flow have been investigated under different shear rates and hematocrit values and quantified with and without RBC aggregation. The results obtained in terms of wall shear stress (WSS) and blood viscosity indicate a significant difference between Newtonian and powerlaw fluid assumptions.