用于中风诊断的医疗保健数字双胞胎

I. Hussain, Md. Azam Hossain, Se-Jin Park
{"title":"用于中风诊断的医疗保健数字双胞胎","authors":"I. Hussain, Md. Azam Hossain, Se-Jin Park","doi":"10.1109/BECITHCON54710.2021.9893641","DOIUrl":null,"url":null,"abstract":"Neurological impairment is a common disorder observed in stroke population and Electroencephalography (EEG) monitoring is considered a significant marker for diagnostics stroke onset. This study aims to propose a proof-of-concept of a healthcare “digital twin” and utilize EEG data and machine-learning models to build a digital twin for the stroke patients. We examined 48 stroke patients admitted to a rehabilitation clinic and 75 healthy persons. Portable EEG devices were used to capture EEG using frontal, central, temporal, and occipital cortical electrodes. The statistical analysis revealed that the revised brain-symmetry index, theta, and delta activities are relevant characteristics for classifying stroke patients and healthy individuals in motor and cognitive states. Using the machine learning approach, Support vector machine (SVM) classified the EEG feature dataset with 76% accuracy (AUC: 0.84) for classifying the stroke and the control group. This healthcare digital twin framework may assist in clinical decision-making for stroke preventive measures and post-stroke treatment.","PeriodicalId":170083,"journal":{"name":"2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Healthcare Digital Twin for Diagnosis of Stroke\",\"authors\":\"I. Hussain, Md. Azam Hossain, Se-Jin Park\",\"doi\":\"10.1109/BECITHCON54710.2021.9893641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurological impairment is a common disorder observed in stroke population and Electroencephalography (EEG) monitoring is considered a significant marker for diagnostics stroke onset. This study aims to propose a proof-of-concept of a healthcare “digital twin” and utilize EEG data and machine-learning models to build a digital twin for the stroke patients. We examined 48 stroke patients admitted to a rehabilitation clinic and 75 healthy persons. Portable EEG devices were used to capture EEG using frontal, central, temporal, and occipital cortical electrodes. The statistical analysis revealed that the revised brain-symmetry index, theta, and delta activities are relevant characteristics for classifying stroke patients and healthy individuals in motor and cognitive states. Using the machine learning approach, Support vector machine (SVM) classified the EEG feature dataset with 76% accuracy (AUC: 0.84) for classifying the stroke and the control group. This healthcare digital twin framework may assist in clinical decision-making for stroke preventive measures and post-stroke treatment.\",\"PeriodicalId\":170083,\"journal\":{\"name\":\"2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BECITHCON54710.2021.9893641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BECITHCON54710.2021.9893641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

神经功能障碍是脑卒中人群中常见的疾病,脑电图监测被认为是诊断脑卒中发病的重要标志。本研究旨在提出医疗保健“数字双胞胎”的概念验证,并利用脑电图数据和机器学习模型为中风患者建立数字双胞胎。我们检查了48名住院康复诊所的中风患者和75名健康人。使用便携式脑电图设备通过额叶、中央、颞叶和枕叶皮质电极捕获脑电图。统计分析表明,修正后的脑对称指数、θ波和δ波活动是区分脑卒中患者和健康人运动和认知状态的相关特征。使用机器学习方法,支持向量机(SVM)以76%的准确率(AUC: 0.84)对脑卒中和对照组进行分类。这种医疗保健数字孪生框架可以帮助中风预防措施和中风后治疗的临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Healthcare Digital Twin for Diagnosis of Stroke
Neurological impairment is a common disorder observed in stroke population and Electroencephalography (EEG) monitoring is considered a significant marker for diagnostics stroke onset. This study aims to propose a proof-of-concept of a healthcare “digital twin” and utilize EEG data and machine-learning models to build a digital twin for the stroke patients. We examined 48 stroke patients admitted to a rehabilitation clinic and 75 healthy persons. Portable EEG devices were used to capture EEG using frontal, central, temporal, and occipital cortical electrodes. The statistical analysis revealed that the revised brain-symmetry index, theta, and delta activities are relevant characteristics for classifying stroke patients and healthy individuals in motor and cognitive states. Using the machine learning approach, Support vector machine (SVM) classified the EEG feature dataset with 76% accuracy (AUC: 0.84) for classifying the stroke and the control group. This healthcare digital twin framework may assist in clinical decision-making for stroke preventive measures and post-stroke treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信