基于电源和内存侧通道的嵌入式系统异常检测

Jiho Park, Virinchi Roy Surabhi, P. Krishnamurthy, S. Garg, R. Karri, F. Khorrami
{"title":"基于电源和内存侧通道的嵌入式系统异常检测","authors":"Jiho Park, Virinchi Roy Surabhi, P. Krishnamurthy, S. Garg, R. Karri, F. Khorrami","doi":"10.1109/ETS48528.2020.9131596","DOIUrl":null,"url":null,"abstract":"We propose multi-modal anomaly detection in embedded systems using time-correlated measurements of power consumption and memory accesses. Time series of power consumption of the processor and memory accesses between L2 cache and memory bus under known-good conditions are used to train one-class support vector machine (SVM) and isolation forest classifiers. These side channels have complementary anomaly detection capabilities. Experiments on a high-fidelity processor emulator show that the method accurately detects anomalies.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anomaly Detection in Embedded Systems Using Power and Memory Side Channels\",\"authors\":\"Jiho Park, Virinchi Roy Surabhi, P. Krishnamurthy, S. Garg, R. Karri, F. Khorrami\",\"doi\":\"10.1109/ETS48528.2020.9131596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose multi-modal anomaly detection in embedded systems using time-correlated measurements of power consumption and memory accesses. Time series of power consumption of the processor and memory accesses between L2 cache and memory bus under known-good conditions are used to train one-class support vector machine (SVM) and isolation forest classifiers. These side channels have complementary anomaly detection capabilities. Experiments on a high-fidelity processor emulator show that the method accurately detects anomalies.\",\"PeriodicalId\":267309,\"journal\":{\"name\":\"2020 IEEE European Test Symposium (ETS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS48528.2020.9131596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出在嵌入式系统中使用功耗和内存访问的时间相关测量的多模态异常检测。利用已知良好条件下处理器功耗和L2缓存与内存总线之间内存访问的时间序列来训练一类支持向量机(SVM)和隔离森林分类器。这些侧信道具有互补的异常检测能力。在高保真处理器仿真器上的实验表明,该方法能够准确地检测出异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection in Embedded Systems Using Power and Memory Side Channels
We propose multi-modal anomaly detection in embedded systems using time-correlated measurements of power consumption and memory accesses. Time series of power consumption of the processor and memory accesses between L2 cache and memory bus under known-good conditions are used to train one-class support vector machine (SVM) and isolation forest classifiers. These side channels have complementary anomaly detection capabilities. Experiments on a high-fidelity processor emulator show that the method accurately detects anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信