格莱德:大数据分析变得容易了

Yu Cheng, Chengjie Qin, Florin Rusu
{"title":"格莱德:大数据分析变得容易了","authors":"Yu Cheng, Chengjie Qin, Florin Rusu","doi":"10.1145/2213836.2213936","DOIUrl":null,"url":null,"abstract":"We present GLADE, a scalable distributed system for large scale data analytics. GLADE takes analytical functions expressed through the User-Defined Aggregate (UDA) interface and executes them efficiently on the input data. The entire computation is encapsulated in a single class which requires the definition of four methods. The runtime takes the user code and executes it right near the data by taking full advantage of the parallelism available inside a single machine as well as across a cluster of computing nodes. The demonstration has two goals. First, it presents the architecture of GLADE and how processing is done by using a series of analytical functions. Second, it compares GLADE with two different classes of systems for data analytics: a relational database (PostgreSQL) enhanced with UDAs and Map-Reduce (Hadoop). We show how the analytical functions are coded into each of these systems (for Map-Reduce, we use both Java code as well as Pig Latin) and compare their expressiveness, scalability, and running time efficiency.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"GLADE: big data analytics made easy\",\"authors\":\"Yu Cheng, Chengjie Qin, Florin Rusu\",\"doi\":\"10.1145/2213836.2213936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present GLADE, a scalable distributed system for large scale data analytics. GLADE takes analytical functions expressed through the User-Defined Aggregate (UDA) interface and executes them efficiently on the input data. The entire computation is encapsulated in a single class which requires the definition of four methods. The runtime takes the user code and executes it right near the data by taking full advantage of the parallelism available inside a single machine as well as across a cluster of computing nodes. The demonstration has two goals. First, it presents the architecture of GLADE and how processing is done by using a series of analytical functions. Second, it compares GLADE with two different classes of systems for data analytics: a relational database (PostgreSQL) enhanced with UDAs and Map-Reduce (Hadoop). We show how the analytical functions are coded into each of these systems (for Map-Reduce, we use both Java code as well as Pig Latin) and compare their expressiveness, scalability, and running time efficiency.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

我们提出了GLADE,一个可扩展的分布式系统,用于大规模数据分析。GLADE采用通过用户定义聚合(User-Defined Aggregate, UDA)接口表达的分析函数,并在输入数据上高效执行。整个计算被封装在一个类中,该类需要定义四个方法。运行时通过充分利用单个机器内部以及跨计算节点集群的并行性,获取用户代码并在数据附近执行。这次演示有两个目的。首先,介绍了GLADE的体系结构以及如何使用一系列分析函数进行处理。其次,它将GLADE与两种不同类型的数据分析系统进行了比较:一种是用UDAs增强的关系数据库(PostgreSQL),另一种是Map-Reduce (Hadoop)。我们将展示如何将分析函数编码到这些系统中(对于Map-Reduce,我们使用Java代码和Pig Latin),并比较它们的表现力、可伸缩性和运行时效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLADE: big data analytics made easy
We present GLADE, a scalable distributed system for large scale data analytics. GLADE takes analytical functions expressed through the User-Defined Aggregate (UDA) interface and executes them efficiently on the input data. The entire computation is encapsulated in a single class which requires the definition of four methods. The runtime takes the user code and executes it right near the data by taking full advantage of the parallelism available inside a single machine as well as across a cluster of computing nodes. The demonstration has two goals. First, it presents the architecture of GLADE and how processing is done by using a series of analytical functions. Second, it compares GLADE with two different classes of systems for data analytics: a relational database (PostgreSQL) enhanced with UDAs and Map-Reduce (Hadoop). We show how the analytical functions are coded into each of these systems (for Map-Reduce, we use both Java code as well as Pig Latin) and compare their expressiveness, scalability, and running time efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信