通过全局优化、元聚类和共识方法发现多个数据结构

Ida Bifulco, Carmine Fedullo, F. Napolitano, G. Raiconi, R. Tagliaferri
{"title":"通过全局优化、元聚类和共识方法发现多个数据结构","authors":"Ida Bifulco, Carmine Fedullo, F. Napolitano, G. Raiconi, R. Tagliaferri","doi":"10.1504/IJKESDP.2009.028984","DOIUrl":null,"url":null,"abstract":"When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple data structure discovery through global optimisation, meta clustering and consensus methods\",\"authors\":\"Ida Bifulco, Carmine Fedullo, F. Napolitano, G. Raiconi, R. Tagliaferri\",\"doi\":\"10.1504/IJKESDP.2009.028984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.\",\"PeriodicalId\":347123,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKESDP.2009.028984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在处理真实数据时,聚类成为一个非常复杂的问题,通常需要许多合理的解决方案。此外,即使完全不同,从经典质量测量(如失真值)的角度来看,这些解决方案也几乎是等效的。这意味着盲目的优化技术本身很容易丢弃有趣的解决方案。在这项工作中,我们提出了一种系统的聚类方法,包括通过全局优化生成一些好的解决方案,通过元聚类分析这些解决方案,以及通过共识聚类最终构建一小部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple data structure discovery through global optimisation, meta clustering and consensus methods
When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信