基于LDPC矩阵的模式识别系统设计

J. O’Sullivan, Po-Hsiang Lai
{"title":"基于LDPC矩阵的模式识别系统设计","authors":"J. O’Sullivan, Po-Hsiang Lai","doi":"10.1109/ISIT.2005.1523287","DOIUrl":null,"url":null,"abstract":"Pattern recognition systems may be designed to recognize an exponentially large number of objects from potentially noisy measurements. We propose a design based on storing compressed representations of binary patterns corresponding to objects of interest. Sensor measurements are similarly compressed and recognition proceeds by comparing the compressed sensor measurements to the compressed representations of the objects. Parity check matrices corresponding to low density parity check codes are used for the compression. This design yields an ensemble of systems such that the probability of error goes to zero as the length of the patterns grows","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pattern recognition system design based on LDPC matrices\",\"authors\":\"J. O’Sullivan, Po-Hsiang Lai\",\"doi\":\"10.1109/ISIT.2005.1523287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition systems may be designed to recognize an exponentially large number of objects from potentially noisy measurements. We propose a design based on storing compressed representations of binary patterns corresponding to objects of interest. Sensor measurements are similarly compressed and recognition proceeds by comparing the compressed sensor measurements to the compressed representations of the objects. Parity check matrices corresponding to low density parity check codes are used for the compression. This design yields an ensemble of systems such that the probability of error goes to zero as the length of the patterns grows\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模式识别系统可以设计为从潜在的噪声测量中识别指数数量的对象。我们提出了一种基于存储与感兴趣对象对应的二进制模式的压缩表示的设计。传感器测量值同样被压缩,并且通过将压缩的传感器测量值与对象的压缩表示进行比较来进行识别。压缩使用与低密度奇偶校验码对应的奇偶校验矩阵。这种设计产生了一个系统集合,使得随着模式长度的增长,错误的概率趋于零
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition system design based on LDPC matrices
Pattern recognition systems may be designed to recognize an exponentially large number of objects from potentially noisy measurements. We propose a design based on storing compressed representations of binary patterns corresponding to objects of interest. Sensor measurements are similarly compressed and recognition proceeds by comparing the compressed sensor measurements to the compressed representations of the objects. Parity check matrices corresponding to low density parity check codes are used for the compression. This design yields an ensemble of systems such that the probability of error goes to zero as the length of the patterns grows
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信