一个用于立体视频合成的目标跟踪和遮挡处理的非因果贝叶斯框架

K. Moustakas, D. Tzovaras, M. Strintzis
{"title":"一个用于立体视频合成的目标跟踪和遮挡处理的非因果贝叶斯框架","authors":"K. Moustakas, D. Tzovaras, M. Strintzis","doi":"10.1109/TDPVT.2004.1335188","DOIUrl":null,"url":null,"abstract":"This work presents a framework for the synthesis of stereoscopic video using as input only a monoscopic image sequence. Initially, bi-directional 2D motion estimation is performed, which is followed by an efficient method for the reliable tracking of object contours. Rigid 3D motion and structure is recovered utilizing extended Kalman filtering. Finally, occlusions are dealt with a novel Bayesian framework, which exploits future information to correctly reconstruct occluded areas. Experimental evaluation shows that the layered object scene representation, combined with the proposed methods for object tracking throughout the sequence and occlusion handling, yields very accurate results.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A non causal Bayesian framework for object tracking and occlusion handling for the synthesis of stereoscopic video\",\"authors\":\"K. Moustakas, D. Tzovaras, M. Strintzis\",\"doi\":\"10.1109/TDPVT.2004.1335188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a framework for the synthesis of stereoscopic video using as input only a monoscopic image sequence. Initially, bi-directional 2D motion estimation is performed, which is followed by an efficient method for the reliable tracking of object contours. Rigid 3D motion and structure is recovered utilizing extended Kalman filtering. Finally, occlusions are dealt with a novel Bayesian framework, which exploits future information to correctly reconstruct occluded areas. Experimental evaluation shows that the layered object scene representation, combined with the proposed methods for object tracking throughout the sequence and occlusion handling, yields very accurate results.\",\"PeriodicalId\":191172,\"journal\":{\"name\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDPVT.2004.1335188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这项工作提出了一个框架,用于合成立体视频使用的输入,只有一个单一的图像序列。首先进行双向二维运动估计,然后采用有效的方法可靠地跟踪目标轮廓。利用扩展卡尔曼滤波恢复刚性三维运动和结构。最后,利用一种新的贝叶斯框架来处理遮挡,该框架利用未来的信息来正确重建遮挡区域。实验结果表明,分层的目标场景表示,结合所提出的整个序列的目标跟踪和遮挡处理方法,产生了非常准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non causal Bayesian framework for object tracking and occlusion handling for the synthesis of stereoscopic video
This work presents a framework for the synthesis of stereoscopic video using as input only a monoscopic image sequence. Initially, bi-directional 2D motion estimation is performed, which is followed by an efficient method for the reliable tracking of object contours. Rigid 3D motion and structure is recovered utilizing extended Kalman filtering. Finally, occlusions are dealt with a novel Bayesian framework, which exploits future information to correctly reconstruct occluded areas. Experimental evaluation shows that the layered object scene representation, combined with the proposed methods for object tracking throughout the sequence and occlusion handling, yields very accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信