M. Wordeman, J. Silberman, G. Maier, M. Scheuermann
{"title":"一个3D系统原型的eDRAM缓存堆叠在类似处理器的逻辑使用硅通孔","authors":"M. Wordeman, J. Silberman, G. Maier, M. Scheuermann","doi":"10.1109/ISSCC.2012.6176968","DOIUrl":null,"url":null,"abstract":"3D integration (3DI) holds promise for improved performance of integrated systems by increasing interconnect bandwidth [1]. A processor stacked with cache memory is one potential application of 3DI [2]. This work describes the design and operation of a prototype of a 3D system, constructed by stacking a memory layer, built with eDRAM [3] and logic blocks from the IBM Power7™ processor L3 cache, and a “processor proxy” layer in 45nm CMOS technology [4] enhanced to include through-silicon vias (TSVs) [5]. Unlike the previously reported 3D eDRAM [6], the 3D stack described here is constructed using 50μm pitch μC4's joining the front side of one thick chip to TSV connections on the back side of a thinned chip. TSVs are formed of Cu-filled vias that are ~20μm in diameter and <;100μm deep [5].","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A 3D system prototype of an eDRAM cache stacked over processor-like logic using through-silicon vias\",\"authors\":\"M. Wordeman, J. Silberman, G. Maier, M. Scheuermann\",\"doi\":\"10.1109/ISSCC.2012.6176968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D integration (3DI) holds promise for improved performance of integrated systems by increasing interconnect bandwidth [1]. A processor stacked with cache memory is one potential application of 3DI [2]. This work describes the design and operation of a prototype of a 3D system, constructed by stacking a memory layer, built with eDRAM [3] and logic blocks from the IBM Power7™ processor L3 cache, and a “processor proxy” layer in 45nm CMOS technology [4] enhanced to include through-silicon vias (TSVs) [5]. Unlike the previously reported 3D eDRAM [6], the 3D stack described here is constructed using 50μm pitch μC4's joining the front side of one thick chip to TSV connections on the back side of a thinned chip. TSVs are formed of Cu-filled vias that are ~20μm in diameter and <;100μm deep [5].\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6176968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6176968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 3D system prototype of an eDRAM cache stacked over processor-like logic using through-silicon vias
3D integration (3DI) holds promise for improved performance of integrated systems by increasing interconnect bandwidth [1]. A processor stacked with cache memory is one potential application of 3DI [2]. This work describes the design and operation of a prototype of a 3D system, constructed by stacking a memory layer, built with eDRAM [3] and logic blocks from the IBM Power7™ processor L3 cache, and a “processor proxy” layer in 45nm CMOS technology [4] enhanced to include through-silicon vias (TSVs) [5]. Unlike the previously reported 3D eDRAM [6], the 3D stack described here is constructed using 50μm pitch μC4's joining the front side of one thick chip to TSV connections on the back side of a thinned chip. TSVs are formed of Cu-filled vias that are ~20μm in diameter and <;100μm deep [5].