{"title":"结合稳定和提高基于神经网络的分类器性能的方法","authors":"Fabricio A. Breve, M. Ponti, N. Mascarenhas","doi":"10.1109/SIBGRAPI.2005.19","DOIUrl":null,"url":null,"abstract":"In this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers\",\"authors\":\"Fabricio A. Breve, M. Ponti, N. Mascarenhas\",\"doi\":\"10.1109/SIBGRAPI.2005.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.\",\"PeriodicalId\":193103,\"journal\":{\"name\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2005.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers
In this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.