基于特征仿射变换的图像超分辨率

Chih-Chung Hsu, Chia-Wen Lin
{"title":"基于特征仿射变换的图像超分辨率","authors":"Chih-Chung Hsu, Chia-Wen Lin","doi":"10.1109/MMSP.2011.6093845","DOIUrl":null,"url":null,"abstract":"State-of-the-art image super-resolution methods usually rely on search in a comprehensive dataset for appropriate high-resolution patch candidates to achieve good visual quality of reconstructed image. Exploiting different scales and orientations in images can effectively enrich a dataset. A large dataset, however, usually leads to high computational complexity and memory requirement, which makes the implementation impractical. This paper proposes a universal framework for enriching the dataset for search-based super-resolution schemes with reasonable computation and memory cost. Toward this end, the proposed method first extracts important features with multiple scales and orientations of patches based on the SIFT (Scale-invariant feature transform) descriptors and then use the extracted features to search in the dataset for the best-match HR patch(es). Once the matched features of patches are found, the found HR patch will be aligned with LR patch using homography estimation. Experimental results demonstrate that the proposed method achieves significant subjective and objective improvement when integrated with several state-of-the-art image super-resolution methods without significantly increasing the cost.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Image super-resolution via feature-based affine transform\",\"authors\":\"Chih-Chung Hsu, Chia-Wen Lin\",\"doi\":\"10.1109/MMSP.2011.6093845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art image super-resolution methods usually rely on search in a comprehensive dataset for appropriate high-resolution patch candidates to achieve good visual quality of reconstructed image. Exploiting different scales and orientations in images can effectively enrich a dataset. A large dataset, however, usually leads to high computational complexity and memory requirement, which makes the implementation impractical. This paper proposes a universal framework for enriching the dataset for search-based super-resolution schemes with reasonable computation and memory cost. Toward this end, the proposed method first extracts important features with multiple scales and orientations of patches based on the SIFT (Scale-invariant feature transform) descriptors and then use the extracted features to search in the dataset for the best-match HR patch(es). Once the matched features of patches are found, the found HR patch will be aligned with LR patch using homography estimation. Experimental results demonstrate that the proposed method achieves significant subjective and objective improvement when integrated with several state-of-the-art image super-resolution methods without significantly increasing the cost.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前的图像超分辨率方法通常依赖于在全面的数据集中搜索合适的高分辨率候选补丁,以获得良好的重建图像视觉质量。利用图像中不同的尺度和方向可以有效地丰富数据集。然而,大型数据集通常会导致高计算复杂度和内存需求,这使得实现不切实际。本文提出了一种具有合理计算和存储成本的通用框架,用于丰富基于搜索的超分辨率方案的数据集。为此,该方法首先基于SIFT (Scale-invariant feature transform,尺度不变特征变换)描述符提取具有多个尺度和方向的重要特征,然后利用提取的特征在数据集中搜索最匹配的HR补丁。一旦找到匹配的斑块特征,利用单应性估计将找到的HR斑块与LR斑块对齐。实验结果表明,该方法与几种最先进的图像超分辨率方法相结合,在不显著增加成本的情况下,主客观分辨率均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image super-resolution via feature-based affine transform
State-of-the-art image super-resolution methods usually rely on search in a comprehensive dataset for appropriate high-resolution patch candidates to achieve good visual quality of reconstructed image. Exploiting different scales and orientations in images can effectively enrich a dataset. A large dataset, however, usually leads to high computational complexity and memory requirement, which makes the implementation impractical. This paper proposes a universal framework for enriching the dataset for search-based super-resolution schemes with reasonable computation and memory cost. Toward this end, the proposed method first extracts important features with multiple scales and orientations of patches based on the SIFT (Scale-invariant feature transform) descriptors and then use the extracted features to search in the dataset for the best-match HR patch(es). Once the matched features of patches are found, the found HR patch will be aligned with LR patch using homography estimation. Experimental results demonstrate that the proposed method achieves significant subjective and objective improvement when integrated with several state-of-the-art image super-resolution methods without significantly increasing the cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信