基于PID控制器的推荐系统加速潜在因素分析

Jinli Li, Xuke Wu, Ye Yuan, Yajuan Wu, Kangkang Ma, Yue Zhou
{"title":"基于PID控制器的推荐系统加速潜在因素分析","authors":"Jinli Li, Xuke Wu, Ye Yuan, Yajuan Wu, Kangkang Ma, Yue Zhou","doi":"10.1109/ICNSC48988.2020.9238055","DOIUrl":null,"url":null,"abstract":"High-dimensional and sparse (HiDS) matrices generated by recommender systems (RSs) contain rich knowledge. A latent factor (LF) model can address such data effectively. Stochastic gradient descent (SGD) is an efficient algorithm for building a LF model on an HiDS matrix. However, it suffers slow convergence. To address this issue, this study proposes to implement a LF model with a proportional integral derivative (PID) controller. The main idea is to continuously apply a correction for SGD to accelerate the training process. Based on such design, a PID-based LF (PLF) model is proposed. Empirical studies on two HiDS matrices from RSs indicate that a PLF model outperforms an LF model in terms of both convergence rate and prediction accuracy for missing data.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated Latent Factor Analysis for Recommender Systems via PID Controller\",\"authors\":\"Jinli Li, Xuke Wu, Ye Yuan, Yajuan Wu, Kangkang Ma, Yue Zhou\",\"doi\":\"10.1109/ICNSC48988.2020.9238055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional and sparse (HiDS) matrices generated by recommender systems (RSs) contain rich knowledge. A latent factor (LF) model can address such data effectively. Stochastic gradient descent (SGD) is an efficient algorithm for building a LF model on an HiDS matrix. However, it suffers slow convergence. To address this issue, this study proposes to implement a LF model with a proportional integral derivative (PID) controller. The main idea is to continuously apply a correction for SGD to accelerate the training process. Based on such design, a PID-based LF (PLF) model is proposed. Empirical studies on two HiDS matrices from RSs indicate that a PLF model outperforms an LF model in terms of both convergence rate and prediction accuracy for missing data.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由推荐系统生成的高维稀疏矩阵包含丰富的知识。潜在因素(LF)模型可以有效地处理这类数据。随机梯度下降法(SGD)是在HiDS矩阵上建立LF模型的有效算法。然而,它的收敛速度很慢。为了解决这个问题,本研究提出使用比例积分导数(PID)控制器来实现LF模型。其主要思想是不断地应用SGD校正来加速训练过程。在此基础上,提出了一种基于pid的LF (PLF)模型。对RSs中两个HiDS矩阵的实证研究表明,PLF模型在缺失数据的收敛速度和预测精度方面都优于LF模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Latent Factor Analysis for Recommender Systems via PID Controller
High-dimensional and sparse (HiDS) matrices generated by recommender systems (RSs) contain rich knowledge. A latent factor (LF) model can address such data effectively. Stochastic gradient descent (SGD) is an efficient algorithm for building a LF model on an HiDS matrix. However, it suffers slow convergence. To address this issue, this study proposes to implement a LF model with a proportional integral derivative (PID) controller. The main idea is to continuously apply a correction for SGD to accelerate the training process. Based on such design, a PID-based LF (PLF) model is proposed. Empirical studies on two HiDS matrices from RSs indicate that a PLF model outperforms an LF model in terms of both convergence rate and prediction accuracy for missing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信