混合人工神经网络算法在标准化降水指数预测中的应用

Kavina S. Dayal, R. Deo, A. Apan
{"title":"混合人工神经网络算法在标准化降水指数预测中的应用","authors":"Kavina S. Dayal, R. Deo, A. Apan","doi":"10.1109/TENCON.2016.7848588","DOIUrl":null,"url":null,"abstract":"The application of wavelet transformation has become a popular area of interest in hydrological modeling as it enables the use of spectral and temporal information contained in input data. Drought modeling is one such area that is still far from complete, considering the stochastic nature of drought characteristics per every drought events. This study therefore aims to predict a drought index, i.e. the Standardized Precipitation Index (SPI), using artificial neural network (ANN) and a hybrid ANN with wavelet analysis (WA-ANN) using four main inputs: precipitation, potential evapotranspiration, Southern Oscillation Index, and Nino 4 index for Brisbane, Australia. For WA-ANN, the four inputs were decomposed into three detail and one approximation levels using Daubechies-4 (db4) orthogonal mother wavelet. The evaluation of prediction performance showed that WA-ANN outperformed ANN model with an increased accuracy by 49.89% based on Root Mean Squared Error values.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index\",\"authors\":\"Kavina S. Dayal, R. Deo, A. Apan\",\"doi\":\"10.1109/TENCON.2016.7848588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of wavelet transformation has become a popular area of interest in hydrological modeling as it enables the use of spectral and temporal information contained in input data. Drought modeling is one such area that is still far from complete, considering the stochastic nature of drought characteristics per every drought events. This study therefore aims to predict a drought index, i.e. the Standardized Precipitation Index (SPI), using artificial neural network (ANN) and a hybrid ANN with wavelet analysis (WA-ANN) using four main inputs: precipitation, potential evapotranspiration, Southern Oscillation Index, and Nino 4 index for Brisbane, Australia. For WA-ANN, the four inputs were decomposed into three detail and one approximation levels using Daubechies-4 (db4) orthogonal mother wavelet. The evaluation of prediction performance showed that WA-ANN outperformed ANN model with an increased accuracy by 49.89% based on Root Mean Squared Error values.\",\"PeriodicalId\":246458,\"journal\":{\"name\":\"2016 IEEE Region 10 Conference (TENCON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2016.7848588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7848588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

小波变换的应用已经成为水文建模的一个热门领域,因为它可以使用输入数据中包含的光谱和时间信息。考虑到每次干旱事件的干旱特征的随机性,干旱建模就是这样一个仍远未完成的领域。基于降水、潜在蒸散量、南方涛动指数和Nino 4指数4个主要输入,利用人工神经网络(ANN)和小波分析混合神经网络(WA-ANN)预测澳大利亚布里斯班的干旱指数,即标准化降水指数(SPI)。对于WA-ANN,使用Daubechies-4 (db4)正交母小波将四个输入分解为三个细节和一个近似水平。预测性能评价表明,基于均方根误差值,WA-ANN的预测精度比ANN模型提高了49.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index
The application of wavelet transformation has become a popular area of interest in hydrological modeling as it enables the use of spectral and temporal information contained in input data. Drought modeling is one such area that is still far from complete, considering the stochastic nature of drought characteristics per every drought events. This study therefore aims to predict a drought index, i.e. the Standardized Precipitation Index (SPI), using artificial neural network (ANN) and a hybrid ANN with wavelet analysis (WA-ANN) using four main inputs: precipitation, potential evapotranspiration, Southern Oscillation Index, and Nino 4 index for Brisbane, Australia. For WA-ANN, the four inputs were decomposed into three detail and one approximation levels using Daubechies-4 (db4) orthogonal mother wavelet. The evaluation of prediction performance showed that WA-ANN outperformed ANN model with an increased accuracy by 49.89% based on Root Mean Squared Error values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信