{"title":"普朗克分布函数和维恩峰中隐藏着什么?一、太阳光子的三个特征","authors":"J. Stávek","doi":"10.24018/ejphysics.2023.5.2.240","DOIUrl":null,"url":null,"abstract":"There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are three features of the Solar photons – their refrangibility, their heat effect, and their chemical effect. The first feature – their refrangibility – can be modelled using the linear-wavelength dispersion rule for spectrometers with diffraction gratings and using the frequency-square rule for spectrometers with prisms. However, there are no accepted forms of the PDF to model heat effect of the Solar photons on atoms and molecules, and to model the effect of the PDF on chemical reactions where the Solar photons play very significant role. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"What is Hidden in the Planck Distribution Function and the Wien´s Peaks? I. Three Features of the Solar Photons\",\"authors\":\"J. Stávek\",\"doi\":\"10.24018/ejphysics.2023.5.2.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are three features of the Solar photons – their refrangibility, their heat effect, and their chemical effect. The first feature – their refrangibility – can be modelled using the linear-wavelength dispersion rule for spectrometers with diffraction gratings and using the frequency-square rule for spectrometers with prisms. However, there are no accepted forms of the PDF to model heat effect of the Solar photons on atoms and molecules, and to model the effect of the PDF on chemical reactions where the Solar photons play very significant role. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2023.5.2.240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2023.5.2.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? I. Three Features of the Solar Photons
There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are three features of the Solar photons – their refrangibility, their heat effect, and their chemical effect. The first feature – their refrangibility – can be modelled using the linear-wavelength dispersion rule for spectrometers with diffraction gratings and using the frequency-square rule for spectrometers with prisms. However, there are no accepted forms of the PDF to model heat effect of the Solar photons on atoms and molecules, and to model the effect of the PDF on chemical reactions where the Solar photons play very significant role. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.