均匀可擦除的AFL

S. Ginsburg, Jonathan Goldstine, S. Greibach
{"title":"均匀可擦除的AFL","authors":"S. Ginsburg, Jonathan Goldstine, S. Greibach","doi":"10.1145/800152.804916","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to show that a number of well-known families have property (*). In particular, we prove that the family of context-free languages does indeed have this property. In addition, we show that several familiar subfamilies of the context-free languages, such as the one-counter languages, have property (*). Finally, we show that there are families satisfying (*) which are not subfamilies of the context-free languages, for we prove that any family generated from one-letter languages has property (*), thereby extending a result of [17].","PeriodicalId":229726,"journal":{"name":"Proceedings of the fourth annual ACM symposium on Theory of computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Uniformly erasable AFL\",\"authors\":\"S. Ginsburg, Jonathan Goldstine, S. Greibach\",\"doi\":\"10.1145/800152.804916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to show that a number of well-known families have property (*). In particular, we prove that the family of context-free languages does indeed have this property. In addition, we show that several familiar subfamilies of the context-free languages, such as the one-counter languages, have property (*). Finally, we show that there are families satisfying (*) which are not subfamilies of the context-free languages, for we prove that any family generated from one-letter languages has property (*), thereby extending a result of [17].\",\"PeriodicalId\":229726,\"journal\":{\"name\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800152.804916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fourth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800152.804916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文的目的是为了证明一些知名家族具有属性(*)。特别地,我们证明了上下文无关的语言家族确实具有这种特性。此外,我们还展示了几个熟悉的上下文无关语言的子家族,例如单计数器语言,具有属性(*)。最后,我们证明了满足(*)的族不是上下文无关语言的子族,因为我们证明了由单字母语言生成的任何族都具有属性(*),从而扩展了[17]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniformly erasable AFL
The purpose of this paper is to show that a number of well-known families have property (*). In particular, we prove that the family of context-free languages does indeed have this property. In addition, we show that several familiar subfamilies of the context-free languages, such as the one-counter languages, have property (*). Finally, we show that there are families satisfying (*) which are not subfamilies of the context-free languages, for we prove that any family generated from one-letter languages has property (*), thereby extending a result of [17].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信