利用扩散张量增强指纹图像

Feriel Romdhane, F. Benzarti, H. Amiri
{"title":"利用扩散张量增强指纹图像","authors":"Feriel Romdhane, F. Benzarti, H. Amiri","doi":"10.1109/ICEESA.2013.6578465","DOIUrl":null,"url":null,"abstract":"Fingerprints are the oldest and most widely used form of biometric identification. However, their image contrast is poor due to skin conditions and application of incorrect finger pressure. Fingerprint enhancement is necessary to ensure the performance and robustness of the algorithms for fingerprint recognition. In this work, we present a fast fingerprint enhancement method based on the diffusion tensor which allows a better performance than a simple gradient. The performance and efficiency of the algorithm are estimated by calculating various quality metrics and compared with the advanced met.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fingerprint images enhancement using diffusion tensor\",\"authors\":\"Feriel Romdhane, F. Benzarti, H. Amiri\",\"doi\":\"10.1109/ICEESA.2013.6578465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fingerprints are the oldest and most widely used form of biometric identification. However, their image contrast is poor due to skin conditions and application of incorrect finger pressure. Fingerprint enhancement is necessary to ensure the performance and robustness of the algorithms for fingerprint recognition. In this work, we present a fast fingerprint enhancement method based on the diffusion tensor which allows a better performance than a simple gradient. The performance and efficiency of the algorithm are estimated by calculating various quality metrics and compared with the advanced met.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

指纹是最古老和最广泛使用的生物识别形式。然而,由于皮肤状况和不正确的手指按压,他们的图像对比度很差。为了保证指纹识别算法的性能和鲁棒性,指纹增强是必要的。在这项工作中,我们提出了一种基于扩散张量的快速指纹增强方法,它比简单的梯度具有更好的性能。通过计算各种质量指标来评估算法的性能和效率,并与先进的算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingerprint images enhancement using diffusion tensor
Fingerprints are the oldest and most widely used form of biometric identification. However, their image contrast is poor due to skin conditions and application of incorrect finger pressure. Fingerprint enhancement is necessary to ensure the performance and robustness of the algorithms for fingerprint recognition. In this work, we present a fast fingerprint enhancement method based on the diffusion tensor which allows a better performance than a simple gradient. The performance and efficiency of the algorithm are estimated by calculating various quality metrics and compared with the advanced met.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信