在野外检测移动众感环境

R. Agarwal, Shaan Chopra, V. Christophides, N. Georgantas, V. Issarny
{"title":"在野外检测移动众感环境","authors":"R. Agarwal, Shaan Chopra, V. Christophides, N. Georgantas, V. Issarny","doi":"10.1109/MDM.2019.00-60","DOIUrl":null,"url":null,"abstract":"Understanding the sensing context of raw data is crucial for assessing the quality of large crowdsourced spatio-temporal datasets. Detecting sensing contexts in the wild is a challenging task and requires features from smartphone sensors that are not always available. In this paper, we propose three heuristic algorithms for detecting sensing contexts such as in/out-pocket, under/over-ground, and in/out-door for crowdsourced datasets that are destined for human mobility mining. These are unsupervised binary classifiers with a small memory footprint and execution time. Using a segment of the Ambiciti real dataset – a feature-limited crowdsourced dataset – we report that our algorithms perform equally well in terms of balanced accuracy (within 4.3%) when compared to machine learning (ML) models reported by an AutoML tool.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting Mobile Crowdsensing Context in the Wild\",\"authors\":\"R. Agarwal, Shaan Chopra, V. Christophides, N. Georgantas, V. Issarny\",\"doi\":\"10.1109/MDM.2019.00-60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the sensing context of raw data is crucial for assessing the quality of large crowdsourced spatio-temporal datasets. Detecting sensing contexts in the wild is a challenging task and requires features from smartphone sensors that are not always available. In this paper, we propose three heuristic algorithms for detecting sensing contexts such as in/out-pocket, under/over-ground, and in/out-door for crowdsourced datasets that are destined for human mobility mining. These are unsupervised binary classifiers with a small memory footprint and execution time. Using a segment of the Ambiciti real dataset – a feature-limited crowdsourced dataset – we report that our algorithms perform equally well in terms of balanced accuracy (within 4.3%) when compared to machine learning (ML) models reported by an AutoML tool.\",\"PeriodicalId\":241426,\"journal\":{\"name\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2019.00-60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解原始数据的感知环境对于评估大型众包时空数据集的质量至关重要。在野外检测传感环境是一项具有挑战性的任务,需要智能手机传感器的功能,而这些功能并不总是可用的。在本文中,我们提出了三种启发式算法,用于检测用于人类移动性挖掘的众包数据集的传感环境,如口袋内/口袋外、地下/地上和室内/室外。它们是无监督的二进制分类器,内存占用和执行时间都很小。使用Ambiciti真实数据集的一部分-一个功能有限的众包数据集-我们报告说,与AutoML工具报告的机器学习(ML)模型相比,我们的算法在平衡精度(4.3%以内)方面表现同样良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Mobile Crowdsensing Context in the Wild
Understanding the sensing context of raw data is crucial for assessing the quality of large crowdsourced spatio-temporal datasets. Detecting sensing contexts in the wild is a challenging task and requires features from smartphone sensors that are not always available. In this paper, we propose three heuristic algorithms for detecting sensing contexts such as in/out-pocket, under/over-ground, and in/out-door for crowdsourced datasets that are destined for human mobility mining. These are unsupervised binary classifiers with a small memory footprint and execution time. Using a segment of the Ambiciti real dataset – a feature-limited crowdsourced dataset – we report that our algorithms perform equally well in terms of balanced accuracy (within 4.3%) when compared to machine learning (ML) models reported by an AutoML tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信