模型不确定性约束下机器人的鲁棒刚度控制

Haifa Mehdi, O. Boubaker
{"title":"模型不确定性约束下机器人的鲁棒刚度控制","authors":"Haifa Mehdi, O. Boubaker","doi":"10.1109/ICEESA.2013.6578388","DOIUrl":null,"url":null,"abstract":"In this paper, we present an improved proof of global asymptotic stability of constrained robotic systems under model uncertainties. The control objective is to make the robotic manipulator's end effector to track the reference trajectories in the task space. The proposed approach is an enough straightforward method without force and position control separation. It's based on the Lyapunov Hamiltonian method and the stiffness control strategy. The robustness of the suggested robust controller is proved via simulation results.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust stiffness control for constrained robots under model uncertainties\",\"authors\":\"Haifa Mehdi, O. Boubaker\",\"doi\":\"10.1109/ICEESA.2013.6578388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an improved proof of global asymptotic stability of constrained robotic systems under model uncertainties. The control objective is to make the robotic manipulator's end effector to track the reference trajectories in the task space. The proposed approach is an enough straightforward method without force and position control separation. It's based on the Lyapunov Hamiltonian method and the stiffness control strategy. The robustness of the suggested robust controller is proved via simulation results.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了模型不确定性条件下约束机器人系统全局渐近稳定性的改进证明。控制目标是使机器人末端执行器在任务空间中跟踪参考轨迹。该方法不需要力控和位控分离,是一种简单易行的方法。该方法基于李雅普诺夫哈密顿方法和刚度控制策略。仿真结果证明了所提鲁棒控制器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust stiffness control for constrained robots under model uncertainties
In this paper, we present an improved proof of global asymptotic stability of constrained robotic systems under model uncertainties. The control objective is to make the robotic manipulator's end effector to track the reference trajectories in the task space. The proposed approach is an enough straightforward method without force and position control separation. It's based on the Lyapunov Hamiltonian method and the stiffness control strategy. The robustness of the suggested robust controller is proved via simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信