基于进化多目标优化的时间表交互选择

A. Bhatt, Lakshmi Kurup
{"title":"基于进化多目标优化的时间表交互选择","authors":"A. Bhatt, Lakshmi Kurup","doi":"10.1109/CSCITA.2017.8066525","DOIUrl":null,"url":null,"abstract":"Automatic generation of a time table with multi-level constraints is a challenging exercise. Typically, a timetable problem has many possible solutions in the initial search space, each with a distinct fitness level. In this paper we propose a multi-stage hybrid solution based on an evolutionary algorithm where the initial population is first generated that satisfies all the hard constraints. A user configurable fitness function is used to test the soft constraints. Solutions with fitness value above a certain threshold are then mutated to improve the fitness level of the next population and an acceptable optimal solution can then be selected interactively by the user. This unique interactive approach with configurable fitness functions allows more control to the user over the selection of an optimal solution and helps in multi-objective decision making.","PeriodicalId":299147,"journal":{"name":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive selection of time-tables generated using evolutionary multi-objective optimization\",\"authors\":\"A. Bhatt, Lakshmi Kurup\",\"doi\":\"10.1109/CSCITA.2017.8066525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic generation of a time table with multi-level constraints is a challenging exercise. Typically, a timetable problem has many possible solutions in the initial search space, each with a distinct fitness level. In this paper we propose a multi-stage hybrid solution based on an evolutionary algorithm where the initial population is first generated that satisfies all the hard constraints. A user configurable fitness function is used to test the soft constraints. Solutions with fitness value above a certain threshold are then mutated to improve the fitness level of the next population and an acceptable optimal solution can then be selected interactively by the user. This unique interactive approach with configurable fitness functions allows more control to the user over the selection of an optimal solution and helps in multi-objective decision making.\",\"PeriodicalId\":299147,\"journal\":{\"name\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCITA.2017.8066525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA.2017.8066525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动生成具有多级约束的时间表是一项具有挑战性的工作。通常,时间表问题在初始搜索空间中有许多可能的解决方案,每个解决方案都具有不同的适合度水平。本文提出了一种基于进化算法的多阶段混合解决方案,其中首先生成满足所有硬约束的初始种群。用户可配置适应度函数用于测试软约束。然后对适应度值超过一定阈值的解进行突变,以提高下一个种群的适应度水平,然后用户可以交互地选择可接受的最优解。这种独特的交互式方法具有可配置的适应度函数,允许用户在选择最佳解决方案时进行更多的控制,并有助于多目标决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive selection of time-tables generated using evolutionary multi-objective optimization
Automatic generation of a time table with multi-level constraints is a challenging exercise. Typically, a timetable problem has many possible solutions in the initial search space, each with a distinct fitness level. In this paper we propose a multi-stage hybrid solution based on an evolutionary algorithm where the initial population is first generated that satisfies all the hard constraints. A user configurable fitness function is used to test the soft constraints. Solutions with fitness value above a certain threshold are then mutated to improve the fitness level of the next population and an acceptable optimal solution can then be selected interactively by the user. This unique interactive approach with configurable fitness functions allows more control to the user over the selection of an optimal solution and helps in multi-objective decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信