基于加权矩阵距离度量的人脸图像分类

C. Rouabhia, Kheira Hamdaoui, H. Tebbikh
{"title":"基于加权矩阵距离度量的人脸图像分类","authors":"C. Rouabhia, Kheira Hamdaoui, H. Tebbikh","doi":"10.1109/ICMWI.2010.5648020","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel weighted distance metric based on 2D matrices rather than 1D vectors and the eigenvalues for face images classification and recognition. This distance is measured between two feature matrices obtained by two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA). The weights are the inverse of the eigenvalues of the total scatter matrix of face matrices sorted in decreasing order and the classification strategy adopted is the nearest neighbour algorithm. To test and evaluate the efficiency of the proposed distance metric, experiments were carried out using the international ORL face database. The experimental results show the high performance of the weighted matrix distance metric over the Yang and the Frobenius distances.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weighted matrix distance metric for face images classification\",\"authors\":\"C. Rouabhia, Kheira Hamdaoui, H. Tebbikh\",\"doi\":\"10.1109/ICMWI.2010.5648020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel weighted distance metric based on 2D matrices rather than 1D vectors and the eigenvalues for face images classification and recognition. This distance is measured between two feature matrices obtained by two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA). The weights are the inverse of the eigenvalues of the total scatter matrix of face matrices sorted in decreasing order and the classification strategy adopted is the nearest neighbour algorithm. To test and evaluate the efficiency of the proposed distance metric, experiments were carried out using the international ORL face database. The experimental results show the high performance of the weighted matrix distance metric over the Yang and the Frobenius distances.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5648020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5648020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的基于二维矩阵而非一维向量和特征值的加权距离度量,用于人脸图像的分类和识别。该距离是通过二维主成分分析(2DPCA)和二维线性判别分析(2DLDA)获得的两个特征矩阵之间的距离来测量的。权重为人脸矩阵总散点矩阵特征值的逆,分类策略为最近邻算法。为了测试和评估所提出的距离度量的有效性,使用国际ORL人脸数据库进行了实验。实验结果表明,加权矩阵距离度量在Yang距离和Frobenius距离上具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted matrix distance metric for face images classification
This paper proposes a novel weighted distance metric based on 2D matrices rather than 1D vectors and the eigenvalues for face images classification and recognition. This distance is measured between two feature matrices obtained by two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA). The weights are the inverse of the eigenvalues of the total scatter matrix of face matrices sorted in decreasing order and the classification strategy adopted is the nearest neighbour algorithm. To test and evaluate the efficiency of the proposed distance metric, experiments were carried out using the international ORL face database. The experimental results show the high performance of the weighted matrix distance metric over the Yang and the Frobenius distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信