电力系统预测的回归与人工神经网络方法比较

A. Andreotti, Bianca Caiazzo, Antonio Di Pasquale, M. Pagano
{"title":"电力系统预测的回归与人工神经网络方法比较","authors":"A. Andreotti, Bianca Caiazzo, Antonio Di Pasquale, M. Pagano","doi":"10.23919/AEIT53387.2021.9626938","DOIUrl":null,"url":null,"abstract":"Power-forecasting model is a relevant topic in modern power systems. This is due to the wide integration of Renewable Energy Sources (RESs) and their not predictable production. To face this issue, the paper presents a comparison between the performances of the traditional Autoregressive (AR) statistical method and the more recent Artificial Neural Network (ANN) method. The comparison is applied in forecasting of the most significant RES present in the Sicily zone (Italy), i.e., solar sources. To this aim, using the data of Gestore Servizi Energetici (GSE), both the AR and ANN architectures are built by exploiting the information available in time period 2010 − 2015 in terms of temperatures and solar irradiation, thus obtaining a power forecasting for 2016 for each country of the Sicily zone. The performances of the two different methods are compared on the basis of both Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. These two indexes are used to evaluate the accuracy of the proposed models.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast\",\"authors\":\"A. Andreotti, Bianca Caiazzo, Antonio Di Pasquale, M. Pagano\",\"doi\":\"10.23919/AEIT53387.2021.9626938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power-forecasting model is a relevant topic in modern power systems. This is due to the wide integration of Renewable Energy Sources (RESs) and their not predictable production. To face this issue, the paper presents a comparison between the performances of the traditional Autoregressive (AR) statistical method and the more recent Artificial Neural Network (ANN) method. The comparison is applied in forecasting of the most significant RES present in the Sicily zone (Italy), i.e., solar sources. To this aim, using the data of Gestore Servizi Energetici (GSE), both the AR and ANN architectures are built by exploiting the information available in time period 2010 − 2015 in terms of temperatures and solar irradiation, thus obtaining a power forecasting for 2016 for each country of the Sicily zone. The performances of the two different methods are compared on the basis of both Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. These two indexes are used to evaluate the accuracy of the proposed models.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9626938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功率预测模型是现代电力系统中的一个相关课题。这是由于可再生能源(RESs)的广泛整合及其不可预测的产量。针对这一问题,本文比较了传统的自回归(AR)统计方法和最新的人工神经网络(ANN)方法的性能。比较应用于预测西西里岛地区(意大利)最重要的可再生能源,即太阳能资源。为此,利用Gestore Servizi Energetici (GSE)的数据,利用2010 - 2015年期间的温度和太阳辐照信息,构建了AR和ANN架构,从而获得了西西里岛地区每个国家2016年的电力预测。在均方根误差(RMSE)和平均绝对百分比误差(MAPE)的基础上,比较了两种不同方法的性能。用这两个指标来评价所提模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast
Power-forecasting model is a relevant topic in modern power systems. This is due to the wide integration of Renewable Energy Sources (RESs) and their not predictable production. To face this issue, the paper presents a comparison between the performances of the traditional Autoregressive (AR) statistical method and the more recent Artificial Neural Network (ANN) method. The comparison is applied in forecasting of the most significant RES present in the Sicily zone (Italy), i.e., solar sources. To this aim, using the data of Gestore Servizi Energetici (GSE), both the AR and ANN architectures are built by exploiting the information available in time period 2010 − 2015 in terms of temperatures and solar irradiation, thus obtaining a power forecasting for 2016 for each country of the Sicily zone. The performances of the two different methods are compared on the basis of both Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. These two indexes are used to evaluate the accuracy of the proposed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信