{"title":"带内全双工自由空间光收发器原型","authors":"A. F. M. S. Haq, M. Khan, M. Yuksel","doi":"10.1109/LANMAN.2018.8475107","DOIUrl":null,"url":null,"abstract":"Free-Space-Optical (FSO) communication has become an attractive option over Radio Frequency (RF) communication due to having broader bandwidth, unlicensed band, higher spatial reuse, and enhanced security. In-band full-duplex FSO (IBFD-FSO) transceivers ensure, in some cases enhance, these features enabling future vision of smart communication and Internet-of-Things (IoT) applications. Even though IBFDFSO transceivers can double the network capacity theoretically, overall performance and capacity is limited by interference and optical feedback. In this paper, we present a proof-ofconcept prototype of IBFD-FSO transceiver by implementing isolation technique to reduce optical feedback. We demonstrate the effectiveness of the isolation technique and performance through test-bed experiments using off-the-shelf components.","PeriodicalId":103856,"journal":{"name":"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Prototype of In-Band Full-Duplex Free-Space Optical Transceiver\",\"authors\":\"A. F. M. S. Haq, M. Khan, M. Yuksel\",\"doi\":\"10.1109/LANMAN.2018.8475107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free-Space-Optical (FSO) communication has become an attractive option over Radio Frequency (RF) communication due to having broader bandwidth, unlicensed band, higher spatial reuse, and enhanced security. In-band full-duplex FSO (IBFD-FSO) transceivers ensure, in some cases enhance, these features enabling future vision of smart communication and Internet-of-Things (IoT) applications. Even though IBFDFSO transceivers can double the network capacity theoretically, overall performance and capacity is limited by interference and optical feedback. In this paper, we present a proof-ofconcept prototype of IBFD-FSO transceiver by implementing isolation technique to reduce optical feedback. We demonstrate the effectiveness of the isolation technique and performance through test-bed experiments using off-the-shelf components.\",\"PeriodicalId\":103856,\"journal\":{\"name\":\"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LANMAN.2018.8475107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN.2018.8475107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Prototype of In-Band Full-Duplex Free-Space Optical Transceiver
Free-Space-Optical (FSO) communication has become an attractive option over Radio Frequency (RF) communication due to having broader bandwidth, unlicensed band, higher spatial reuse, and enhanced security. In-band full-duplex FSO (IBFD-FSO) transceivers ensure, in some cases enhance, these features enabling future vision of smart communication and Internet-of-Things (IoT) applications. Even though IBFDFSO transceivers can double the network capacity theoretically, overall performance and capacity is limited by interference and optical feedback. In this paper, we present a proof-ofconcept prototype of IBFD-FSO transceiver by implementing isolation technique to reduce optical feedback. We demonstrate the effectiveness of the isolation technique and performance through test-bed experiments using off-the-shelf components.