功能/系统Fmax预测的数据学习技术

Li-C. Wang
{"title":"功能/系统Fmax预测的数据学习技术","authors":"Li-C. Wang","doi":"10.1109/DFT.2009.61","DOIUrl":null,"url":null,"abstract":"In this talk, we will present a data learning methodology for building a Fmax predictor based on structural test measurements. Given Fmax and structural test measurements on a set of sample chips, we will show that correlation between the two frequency variations can be greatly improved if “noisy” samples are removed. We develop a method to identify such noisy samples. We explain the data learning methodology and study various learning techniques using data collected on a recent high-performance microprocessor design.","PeriodicalId":405651,"journal":{"name":"2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Learning Techniques for Functional/System Fmax Prediction\",\"authors\":\"Li-C. Wang\",\"doi\":\"10.1109/DFT.2009.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we will present a data learning methodology for building a Fmax predictor based on structural test measurements. Given Fmax and structural test measurements on a set of sample chips, we will show that correlation between the two frequency variations can be greatly improved if “noisy” samples are removed. We develop a method to identify such noisy samples. We explain the data learning methodology and study various learning techniques using data collected on a recent high-performance microprocessor design.\",\"PeriodicalId\":405651,\"journal\":{\"name\":\"2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2009.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2009.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这次演讲中,我们将介绍一种数据学习方法,用于建立基于结构测试测量的Fmax预测器。给定一组样本芯片上的Fmax和结构测试测量值,我们将表明,如果去除“噪声”样本,两种频率变化之间的相关性可以大大改善。我们开发了一种方法来识别这种有噪声的样本。我们解释了数据学习方法,并使用最近高性能微处理器设计上收集的数据研究了各种学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Learning Techniques for Functional/System Fmax Prediction
In this talk, we will present a data learning methodology for building a Fmax predictor based on structural test measurements. Given Fmax and structural test measurements on a set of sample chips, we will show that correlation between the two frequency variations can be greatly improved if “noisy” samples are removed. We develop a method to identify such noisy samples. We explain the data learning methodology and study various learning techniques using data collected on a recent high-performance microprocessor design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信