基于小波自回归模型和神经网络的肌电信号分类控制假肢仿生手

Ismail Yazici, E. Koklukaya, B. Baslo
{"title":"基于小波自回归模型和神经网络的肌电信号分类控制假肢仿生手","authors":"Ismail Yazici, E. Koklukaya, B. Baslo","doi":"10.1109/BIYOMUT.2009.5130379","DOIUrl":null,"url":null,"abstract":"This work has aimed to contribute to the prothesis-bionic hand studies. Four hundred eighty signals used in this work correspond to position of adduction motion of thumb, flexion motion of thumb, abduction motion of fingers were collected by surface electrodes. Eight healthy has participated for collecting by surface electromyogram (SEMG). The wavelet based autoregressive models of collected signals are used as feature vector for artifical neural networks. Feed forward and back propagation network, radial basis network and linear vector quantization network are used for classification in this work. One hundred twenty samples of 160 samples collected correspond to all motion are used for training cluster and as for 40 samples for testing cluster. As a result maximum accuracy rate has occured as % 90 for feed forward and back propagation network, % 92 for radial basis network and % 75,5 for learning vector quantization network.","PeriodicalId":119026,"journal":{"name":"2009 14th National Biomedical Engineering Meeting","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of EMG signals using wavelet based autoregressive models and neural networks to control prothesis-bionic hand\",\"authors\":\"Ismail Yazici, E. Koklukaya, B. Baslo\",\"doi\":\"10.1109/BIYOMUT.2009.5130379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work has aimed to contribute to the prothesis-bionic hand studies. Four hundred eighty signals used in this work correspond to position of adduction motion of thumb, flexion motion of thumb, abduction motion of fingers were collected by surface electrodes. Eight healthy has participated for collecting by surface electromyogram (SEMG). The wavelet based autoregressive models of collected signals are used as feature vector for artifical neural networks. Feed forward and back propagation network, radial basis network and linear vector quantization network are used for classification in this work. One hundred twenty samples of 160 samples collected correspond to all motion are used for training cluster and as for 40 samples for testing cluster. As a result maximum accuracy rate has occured as % 90 for feed forward and back propagation network, % 92 for radial basis network and % 75,5 for learning vector quantization network.\",\"PeriodicalId\":119026,\"journal\":{\"name\":\"2009 14th National Biomedical Engineering Meeting\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 14th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2009.5130379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 14th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2009.5130379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作旨在为假肢仿生手的研究做出贡献。本工作中使用的480个信号对应于拇指内收运动、拇指屈曲运动、手指外展运动的位置。8例健康人参加了表面肌电图采集。将采集信号的小波自回归模型作为人工神经网络的特征向量。本文采用前馈和反向传播网络、径向基网络和线性矢量量化网络进行分类。所有运动对应的160个样本中,120个样本用于训练聚类,40个样本用于测试聚类。结果表明,前馈和反向传播网络的最大准确率为% 90,径向基网络为% 92,学习向量量化网络为% 75,5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of EMG signals using wavelet based autoregressive models and neural networks to control prothesis-bionic hand
This work has aimed to contribute to the prothesis-bionic hand studies. Four hundred eighty signals used in this work correspond to position of adduction motion of thumb, flexion motion of thumb, abduction motion of fingers were collected by surface electrodes. Eight healthy has participated for collecting by surface electromyogram (SEMG). The wavelet based autoregressive models of collected signals are used as feature vector for artifical neural networks. Feed forward and back propagation network, radial basis network and linear vector quantization network are used for classification in this work. One hundred twenty samples of 160 samples collected correspond to all motion are used for training cluster and as for 40 samples for testing cluster. As a result maximum accuracy rate has occured as % 90 for feed forward and back propagation network, % 92 for radial basis network and % 75,5 for learning vector quantization network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信