基于神经网络的新型弹力织物设计

Hamza Alibi, F. Fayala, A. Jemni, Xianyi Zeng
{"title":"基于神经网络的新型弹力织物设计","authors":"Hamza Alibi, F. Fayala, A. Jemni, Xianyi Zeng","doi":"10.1109/ICEESA.2013.6578362","DOIUrl":null,"url":null,"abstract":"In this paper, an artificial neural network (ANN) aided system for designing knit stretch materials based on the virtual leave one out approach is presented. This system aims at modeling the relation between functional properties (outputs) and structural parameters (inputs) of knitted fabrics made from pure yarn cotton (cellulose) and viscose (regenerated cellulose) fibers and plated knitted with elasthane (Lycra) fibers. Knitted fabric structure type, yarn count, yarn composition, gauge, elasthane fiber proportion (%), elasthane yarn linear density, fabric thickness and fabric areal density, were used as inputs to ANN model. These models have been validated by a testing data. The developed neural model allows designers to optimize the structure of knit stretch materials according to the functional properties.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network system for designing new stretch fabrics\",\"authors\":\"Hamza Alibi, F. Fayala, A. Jemni, Xianyi Zeng\",\"doi\":\"10.1109/ICEESA.2013.6578362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an artificial neural network (ANN) aided system for designing knit stretch materials based on the virtual leave one out approach is presented. This system aims at modeling the relation between functional properties (outputs) and structural parameters (inputs) of knitted fabrics made from pure yarn cotton (cellulose) and viscose (regenerated cellulose) fibers and plated knitted with elasthane (Lycra) fibers. Knitted fabric structure type, yarn count, yarn composition, gauge, elasthane fiber proportion (%), elasthane yarn linear density, fabric thickness and fabric areal density, were used as inputs to ANN model. These models have been validated by a testing data. The developed neural model allows designers to optimize the structure of knit stretch materials according to the functional properties.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于虚拟留一方法的人工神经网络辅助针织弹力材料设计系统。该系统旨在模拟纯棉(纤维素)和粘胶(再生纤维素)纤维针织物和弹性烷(莱卡)纤维镀面针织物的功能特性(输出)和结构参数(输入)之间的关系。以针织物的结构类型、支数、纱线成分、规格、弹性体纤维比例(%)、弹性体线密度、织物厚度和织物面密度作为人工神经网络模型的输入。通过试验数据验证了模型的正确性。所开发的神经模型使设计人员能够根据织物的功能特性对织物的结构进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network system for designing new stretch fabrics
In this paper, an artificial neural network (ANN) aided system for designing knit stretch materials based on the virtual leave one out approach is presented. This system aims at modeling the relation between functional properties (outputs) and structural parameters (inputs) of knitted fabrics made from pure yarn cotton (cellulose) and viscose (regenerated cellulose) fibers and plated knitted with elasthane (Lycra) fibers. Knitted fabric structure type, yarn count, yarn composition, gauge, elasthane fiber proportion (%), elasthane yarn linear density, fabric thickness and fabric areal density, were used as inputs to ANN model. These models have been validated by a testing data. The developed neural model allows designers to optimize the structure of knit stretch materials according to the functional properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信