链接数据分区中的冗余度用于高效查询求值

Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos
{"title":"链接数据分区中的冗余度用于高效查询求值","authors":"Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos","doi":"10.1109/FiCloud.2015.36","DOIUrl":null,"url":null,"abstract":"The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase.","PeriodicalId":182204,"journal":{"name":"2015 3rd International Conference on Future Internet of Things and Cloud","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Redundancy in Linked Data Partitioning for Efficient Query Evaluation\",\"authors\":\"Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos\",\"doi\":\"10.1109/FiCloud.2015.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase.\",\"PeriodicalId\":182204,\"journal\":{\"name\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2015.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Future Internet of Things and Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了利用Map-Reduce对大量关联数据进行高效查询的问题。所提出的方法基于以下假设:a)数据图在分布式文件系统中被任意分区,这样数据段之间的数据三元组复制是允许的。b)数据三元组的复制是这样一种方式,可以从单个数据段获得一种特殊形式的查询,称为主题-对象星型查询。c)用户提出的每一个查询,都可以转化为一组主客体星形子查询。我们提出了一种一个半阶段、可扩展的Map-Reduce算法,该算法通过计算和适当组合子查询的答案来有效地计算初始查询的答案。证明了在一定条件下,查询可以在单个map-约简阶段得到回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redundancy in Linked Data Partitioning for Efficient Query Evaluation
The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信