螺旋矢量有源滤波器的发展

K. Seki
{"title":"螺旋矢量有源滤波器的发展","authors":"K. Seki","doi":"10.1109/PCCON.2007.373017","DOIUrl":null,"url":null,"abstract":"The paper develops active filters according to spiral vector theory that has a definition of instantaneous reactive power in single-phase networks. At first, the paper obtains rms active and reactive power with integral method and shows that they are the same in a steady state condition and in a transient state condition, then it obtains the system voltage with least square method and the system current that has a sinusoidal waveform. The harmonic currents are equal to the load current minus the system current and it used as the output of an active filter.","PeriodicalId":325362,"journal":{"name":"2007 Power Conversion Conference - Nagoya","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of Active Filters with Spiral Vector Theory\",\"authors\":\"K. Seki\",\"doi\":\"10.1109/PCCON.2007.373017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops active filters according to spiral vector theory that has a definition of instantaneous reactive power in single-phase networks. At first, the paper obtains rms active and reactive power with integral method and shows that they are the same in a steady state condition and in a transient state condition, then it obtains the system voltage with least square method and the system current that has a sinusoidal waveform. The harmonic currents are equal to the load current minus the system current and it used as the output of an active filter.\",\"PeriodicalId\":325362,\"journal\":{\"name\":\"2007 Power Conversion Conference - Nagoya\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Power Conversion Conference - Nagoya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCON.2007.373017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Power Conversion Conference - Nagoya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCON.2007.373017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文根据螺旋矢量理论开发有源滤波器,并给出了单相网络瞬时无功功率的定义。首先用积分法求出系统有效值有功功率和有效值无功功率,并证明稳态和暂态时有效值相等,然后用最小二乘法求出系统电压和系统电流的正弦波形。谐波电流等于负载电流减去系统电流,它用作有源滤波器的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Active Filters with Spiral Vector Theory
The paper develops active filters according to spiral vector theory that has a definition of instantaneous reactive power in single-phase networks. At first, the paper obtains rms active and reactive power with integral method and shows that they are the same in a steady state condition and in a transient state condition, then it obtains the system voltage with least square method and the system current that has a sinusoidal waveform. The harmonic currents are equal to the load current minus the system current and it used as the output of an active filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信