通过节能用户合作,回收密集基站布局中的机会收益

Qing Wang, Balaji Rengarajan
{"title":"通过节能用户合作,回收密集基站布局中的机会收益","authors":"Qing Wang, Balaji Rengarajan","doi":"10.1109/WoWMoM.2013.6583397","DOIUrl":null,"url":null,"abstract":"To meet the increasing demand for wireless capacity, future networks are likely to consist of dense layouts of small cells. Thus, the number of concurrent users served by each base station (BS) is likely to be small which results in diminished gains from opportunistic scheduling, particularly under dynamic traffic loads. We propose user-initiated BS-transparent traffic spreading that leverages user-to-user communication to increase BS scheduling flexibility. The proposed scheme is able to increase opportunistic gains and improve user performance. For a specified tradeoff between performance and power expenditure, we characterize the optimal policy by modeling the system as a Markov decision process and also present a heuristic algorithm that yields significant performance gains. Our simulations show that, in the performance-centric case, average file transfer delays are lowered by up to 20% even in homogeneous scenarios, and up to 50% with heterogeneous users. Further, we show that the bulk of the performance improvement can be achieved with a small increase in power expenditure, e.g., in an energy-sensitive case, up to 78% of the performance improvement can be typically achieved at only 20% of the power expenditure of the performance-centric case.","PeriodicalId":158378,"journal":{"name":"2013 IEEE 14th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Recouping opportunistic gain in dense base station layouts through energy-aware user cooperation\",\"authors\":\"Qing Wang, Balaji Rengarajan\",\"doi\":\"10.1109/WoWMoM.2013.6583397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the increasing demand for wireless capacity, future networks are likely to consist of dense layouts of small cells. Thus, the number of concurrent users served by each base station (BS) is likely to be small which results in diminished gains from opportunistic scheduling, particularly under dynamic traffic loads. We propose user-initiated BS-transparent traffic spreading that leverages user-to-user communication to increase BS scheduling flexibility. The proposed scheme is able to increase opportunistic gains and improve user performance. For a specified tradeoff between performance and power expenditure, we characterize the optimal policy by modeling the system as a Markov decision process and also present a heuristic algorithm that yields significant performance gains. Our simulations show that, in the performance-centric case, average file transfer delays are lowered by up to 20% even in homogeneous scenarios, and up to 50% with heterogeneous users. Further, we show that the bulk of the performance improvement can be achieved with a small increase in power expenditure, e.g., in an energy-sensitive case, up to 78% of the performance improvement can be typically achieved at only 20% of the power expenditure of the performance-centric case.\",\"PeriodicalId\":158378,\"journal\":{\"name\":\"2013 IEEE 14th International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2013.6583397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2013.6583397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

为了满足对无线容量日益增长的需求,未来的网络可能由密集布局的小型蜂窝组成。因此,每个基站(BS)服务的并发用户数量可能很小,这导致机会调度的收益减少,特别是在动态流量负载下。我们提出用户发起的BS透明流量传播,利用用户对用户通信来增加BS调度灵活性。该方案能够增加机会增益,提高用户性能。对于性能和功耗之间的特定权衡,我们通过将系统建模为马尔可夫决策过程来表征最优策略,并提出了一种产生显着性能增益的启发式算法。我们的模拟表明,在以性能为中心的情况下,即使在同构场景中,平均文件传输延迟也降低了20%,在异构用户中降低了50%。此外,我们表明,大部分性能改进可以通过少量增加功耗来实现,例如,在能源敏感的情况下,高达78%的性能改进通常可以在仅消耗20%的性能为中心的情况下实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recouping opportunistic gain in dense base station layouts through energy-aware user cooperation
To meet the increasing demand for wireless capacity, future networks are likely to consist of dense layouts of small cells. Thus, the number of concurrent users served by each base station (BS) is likely to be small which results in diminished gains from opportunistic scheduling, particularly under dynamic traffic loads. We propose user-initiated BS-transparent traffic spreading that leverages user-to-user communication to increase BS scheduling flexibility. The proposed scheme is able to increase opportunistic gains and improve user performance. For a specified tradeoff between performance and power expenditure, we characterize the optimal policy by modeling the system as a Markov decision process and also present a heuristic algorithm that yields significant performance gains. Our simulations show that, in the performance-centric case, average file transfer delays are lowered by up to 20% even in homogeneous scenarios, and up to 50% with heterogeneous users. Further, we show that the bulk of the performance improvement can be achieved with a small increase in power expenditure, e.g., in an energy-sensitive case, up to 78% of the performance improvement can be typically achieved at only 20% of the power expenditure of the performance-centric case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信