一种空间变化均值和方差的活动轮廓模型

Yali Peng, Shigang Liu, Hong Fan, Jiamei Gao, Jiancheng Sun
{"title":"一种空间变化均值和方差的活动轮廓模型","authors":"Yali Peng, Shigang Liu, Hong Fan, Jiamei Gao, Jiancheng Sun","doi":"10.1109/INCoS.2013.139","DOIUrl":null,"url":null,"abstract":"This paper presents a spatially varying mean and variance (SVMV) active contour model. Assuming the distribution of intensity belonging to each region as a Gaussian distribution with spatially varying mean and variance, we define an energy function, and integrate the entire image domain. This energy is then incorporated into a variational level set formulation, from which a curve evolution equation is derived for energy minimization. The proposed model can effectively deal with the images with intensity in homogeneity because of considering the image local mean and variance. Experimental results on synthetic and real images demonstrate that the proposed model can effectively segment the image with intensity in homogeneity.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Spatially Varying Mean and Variance Active Contour Model\",\"authors\":\"Yali Peng, Shigang Liu, Hong Fan, Jiamei Gao, Jiancheng Sun\",\"doi\":\"10.1109/INCoS.2013.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a spatially varying mean and variance (SVMV) active contour model. Assuming the distribution of intensity belonging to each region as a Gaussian distribution with spatially varying mean and variance, we define an energy function, and integrate the entire image domain. This energy is then incorporated into a variational level set formulation, from which a curve evolution equation is derived for energy minimization. The proposed model can effectively deal with the images with intensity in homogeneity because of considering the image local mean and variance. Experimental results on synthetic and real images demonstrate that the proposed model can effectively segment the image with intensity in homogeneity.\",\"PeriodicalId\":353706,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCoS.2013.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种空间变均方差(SVMV)主动轮廓模型。假设每个区域的强度分布为均值和方差随空间变化的高斯分布,定义能量函数,对整个图像域进行积分。然后将该能量合并到变分水平集公式中,从中导出能量最小化的曲线演化方程。该模型考虑了图像的局部均值和方差,能够有效地处理均匀性较强的图像。在合成图像和真实图像上的实验结果表明,该模型可以有效地分割出均匀性较强的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatially Varying Mean and Variance Active Contour Model
This paper presents a spatially varying mean and variance (SVMV) active contour model. Assuming the distribution of intensity belonging to each region as a Gaussian distribution with spatially varying mean and variance, we define an energy function, and integrate the entire image domain. This energy is then incorporated into a variational level set formulation, from which a curve evolution equation is derived for energy minimization. The proposed model can effectively deal with the images with intensity in homogeneity because of considering the image local mean and variance. Experimental results on synthetic and real images demonstrate that the proposed model can effectively segment the image with intensity in homogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信