基于单个随机字符串的多个非交互式零知识证明

U. Feige, D. Lapidot, A. Shamir
{"title":"基于单个随机字符串的多个非交互式零知识证明","authors":"U. Feige, D. Lapidot, A. Shamir","doi":"10.1109/FSCS.1990.89549","DOIUrl":null,"url":null,"abstract":"The authors solve the two major open problems associated with noninteractive zero-knowledge proofs: how to enable polynomially many provers to prove in writing polynomially many theorems based on the basis of a single random string, and how to construct such proofs under general (rather than number-theoretic) assumptions. The constructions can be used in cryptographic applications in which the prover is restricted to polynomial time, and they are much simpler than earlier (and less capable) proposals.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"276","resultStr":"{\"title\":\"Multiple non-interactive zero knowledge proofs based on a single random string\",\"authors\":\"U. Feige, D. Lapidot, A. Shamir\",\"doi\":\"10.1109/FSCS.1990.89549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors solve the two major open problems associated with noninteractive zero-knowledge proofs: how to enable polynomially many provers to prove in writing polynomially many theorems based on the basis of a single random string, and how to construct such proofs under general (rather than number-theoretic) assumptions. The constructions can be used in cryptographic applications in which the prover is restricted to polynomial time, and they are much simpler than earlier (and less capable) proposals.<<ETX>>\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"276\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSCS.1990.89549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 276

摘要

作者解决了与非交互零知识证明相关的两个主要开放问题:如何使多项式多个证明者能够基于单个随机字符串以多项式形式证明多个定理,以及如何在一般(而不是数论)假设下构造这样的证明。这些构造可以用于证明者限于多项式时间的密码学应用中,并且它们比以前的(功能较差的)建议简单得多
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple non-interactive zero knowledge proofs based on a single random string
The authors solve the two major open problems associated with noninteractive zero-knowledge proofs: how to enable polynomially many provers to prove in writing polynomially many theorems based on the basis of a single random string, and how to construct such proofs under general (rather than number-theoretic) assumptions. The constructions can be used in cryptographic applications in which the prover is restricted to polynomial time, and they are much simpler than earlier (and less capable) proposals.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信