在医院获得的婴儿哭声数据库上的自动婴儿哭声分类

R. Tuduce, Mircea Sorin Rusu, H. Cucu, C. Burileanu
{"title":"在医院获得的婴儿哭声数据库上的自动婴儿哭声分类","authors":"R. Tuduce, Mircea Sorin Rusu, H. Cucu, C. Burileanu","doi":"10.1109/TSP.2019.8769075","DOIUrl":null,"url":null,"abstract":"Timely addressing baby cries is always a challenge for new parents. Our project aims to develop a baby cry recognition system, capable of distinguishing between different kinds of baby cries, in real-world conditions. This will inform parents of their specific baby need, while they learn to make the distinction for themselves. In this study, we describe a series of experiments designed to establish the accuracy of popular machine learning algorithms on the categorization of 7 types of baby cries. We tested the algorithms on our own baby cry database, SPLANN[1], containing over 13K baby cries, recorded in a neonatal hospital. We extract acoustic features, perform best feature selection and report increased classification accuracies, from a coin-toss rate of 14.2%.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automated Baby Cry Classification on a Hospital-acquired Baby Cry Database\",\"authors\":\"R. Tuduce, Mircea Sorin Rusu, H. Cucu, C. Burileanu\",\"doi\":\"10.1109/TSP.2019.8769075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timely addressing baby cries is always a challenge for new parents. Our project aims to develop a baby cry recognition system, capable of distinguishing between different kinds of baby cries, in real-world conditions. This will inform parents of their specific baby need, while they learn to make the distinction for themselves. In this study, we describe a series of experiments designed to establish the accuracy of popular machine learning algorithms on the categorization of 7 types of baby cries. We tested the algorithms on our own baby cry database, SPLANN[1], containing over 13K baby cries, recorded in a neonatal hospital. We extract acoustic features, perform best feature selection and report increased classification accuracies, from a coin-toss rate of 14.2%.\",\"PeriodicalId\":399087,\"journal\":{\"name\":\"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2019.8769075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8769075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于初为父母的人来说,及时解决宝宝的哭声总是一个挑战。我们的项目旨在开发一个婴儿哭声识别系统,能够在现实世界中区分不同类型的婴儿哭声。这将告知父母他们的宝宝的具体需求,而他们自己学习做出区分。在本研究中,我们描述了一系列实验,旨在建立流行的机器学习算法对7种婴儿哭声分类的准确性。我们在自己的婴儿哭声数据库SPLANN[1]上测试了算法,该数据库包含一家新生儿医院记录的超过13K个婴儿哭声。我们提取声学特征,进行最佳特征选择,并报告了从14.2%的抛硬币率中提高的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Baby Cry Classification on a Hospital-acquired Baby Cry Database
Timely addressing baby cries is always a challenge for new parents. Our project aims to develop a baby cry recognition system, capable of distinguishing between different kinds of baby cries, in real-world conditions. This will inform parents of their specific baby need, while they learn to make the distinction for themselves. In this study, we describe a series of experiments designed to establish the accuracy of popular machine learning algorithms on the categorization of 7 types of baby cries. We tested the algorithms on our own baby cry database, SPLANN[1], containing over 13K baby cries, recorded in a neonatal hospital. We extract acoustic features, perform best feature selection and report increased classification accuracies, from a coin-toss rate of 14.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信