中立观察者的全知通信与多终端的信息论密钥协议

A. Gohari, V. Anantharam
{"title":"中立观察者的全知通信与多终端的信息论密钥协议","authors":"A. Gohari, V. Anantharam","doi":"10.1109/ISIT.2007.4557523","DOIUrl":null,"url":null,"abstract":"We derive a new upper bound on the secrecy capacity in the source model with eavesdropper which strictly improves the currently best upper bound, i.e. the double intrinsic information bound of Renner and Wolf. Furthermore, unlike that bound, which is defined only in the case of two terminals, the new upper bound is not specific to the two terminals case. We define a problem of communication for omniscience by a neutral observer and establish the equivalence between this new problem and the problem of secret key agreement.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Communication For Omniscience by a Neutral Observer and Information-Theoretic Key Agreement of Multiple Terminals\",\"authors\":\"A. Gohari, V. Anantharam\",\"doi\":\"10.1109/ISIT.2007.4557523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a new upper bound on the secrecy capacity in the source model with eavesdropper which strictly improves the currently best upper bound, i.e. the double intrinsic information bound of Renner and Wolf. Furthermore, unlike that bound, which is defined only in the case of two terminals, the new upper bound is not specific to the two terminals case. We define a problem of communication for omniscience by a neutral observer and establish the equivalence between this new problem and the problem of secret key agreement.\",\"PeriodicalId\":193467,\"journal\":{\"name\":\"2007 IEEE International Symposium on Information Theory\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文严格改进了现有的最佳上界,即Renner和Wolf的双重固有信息界,导出了带窃听器的信源模型的保密能力的新上界。此外,与仅在两个端点的情况下定义的上界不同,新的上界并不特定于两个端点的情况。我们定义了一个中立观察者的全知通信问题,并建立了这个新问题与密钥协议问题之间的等价关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication For Omniscience by a Neutral Observer and Information-Theoretic Key Agreement of Multiple Terminals
We derive a new upper bound on the secrecy capacity in the source model with eavesdropper which strictly improves the currently best upper bound, i.e. the double intrinsic information bound of Renner and Wolf. Furthermore, unlike that bound, which is defined only in the case of two terminals, the new upper bound is not specific to the two terminals case. We define a problem of communication for omniscience by a neutral observer and establish the equivalence between this new problem and the problem of secret key agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信