基于投影的眼周身份验证方法研究

B. Oh, Kangrok Oh, K. Toh
{"title":"基于投影的眼周身份验证方法研究","authors":"B. Oh, Kangrok Oh, K. Toh","doi":"10.1109/ICIEA.2012.6360847","DOIUrl":null,"url":null,"abstract":"The periocular biometric comes into the spotlight recently due to several advantageous characteristics such as easily available and provision of crucial face information. However, many existing works are dedicated to extracting image features using texture based techniques such as local binary pattern (LBP). In view of the simplicity and effectiveness offered, this paper proposes to investigate into projection-based methods for periocular identity verification. Several well established projection-based methods such as principal component analysis, its variants and linear discriminant analysis will be adopted in our performance evaluation based on a subset of FERET face database. Our empirical results show that supervised learning methods significantly outperform those unsupervised learning methods and LBP in terms of equal error rate performance.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On projection-based methods for periocular identity verification\",\"authors\":\"B. Oh, Kangrok Oh, K. Toh\",\"doi\":\"10.1109/ICIEA.2012.6360847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The periocular biometric comes into the spotlight recently due to several advantageous characteristics such as easily available and provision of crucial face information. However, many existing works are dedicated to extracting image features using texture based techniques such as local binary pattern (LBP). In view of the simplicity and effectiveness offered, this paper proposes to investigate into projection-based methods for periocular identity verification. Several well established projection-based methods such as principal component analysis, its variants and linear discriminant analysis will be adopted in our performance evaluation based on a subset of FERET face database. Our empirical results show that supervised learning methods significantly outperform those unsupervised learning methods and LBP in terms of equal error rate performance.\",\"PeriodicalId\":220747,\"journal\":{\"name\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2012.6360847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

眼周生物识别技术因其易于获取和提供关键的人脸信息等优点而成为近年来关注的焦点。然而,现有的许多工作都致力于使用基于纹理的技术,如局部二值模式(LBP)来提取图像特征。鉴于这种方法的简单性和有效性,本文提出研究基于投影的眼周身份验证方法。在基于FERET人脸数据库子集的性能评估中,我们将采用几种成熟的基于投影的方法,如主成分分析、主成分变量分析和线性判别分析。我们的实证结果表明,在等错误率性能方面,监督学习方法明显优于非监督学习方法和LBP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On projection-based methods for periocular identity verification
The periocular biometric comes into the spotlight recently due to several advantageous characteristics such as easily available and provision of crucial face information. However, many existing works are dedicated to extracting image features using texture based techniques such as local binary pattern (LBP). In view of the simplicity and effectiveness offered, this paper proposes to investigate into projection-based methods for periocular identity verification. Several well established projection-based methods such as principal component analysis, its variants and linear discriminant analysis will be adopted in our performance evaluation based on a subset of FERET face database. Our empirical results show that supervised learning methods significantly outperform those unsupervised learning methods and LBP in terms of equal error rate performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信