支持物联网的网络中的服务和应用安全

Philani M. Khumalo, B. Nleya, A. Gomba, A. Mutsvangwa
{"title":"支持物联网的网络中的服务和应用安全","authors":"Philani M. Khumalo, B. Nleya, A. Gomba, A. Mutsvangwa","doi":"10.1109/ICONIC.2018.8601298","DOIUrl":null,"url":null,"abstract":"5G wireless together with optical backbone networks are expected to be the main pillars of the envisaged next /future generation networking (N/FGN) infrastructures. This is an impetus to practical realization of an IoT network that will support and ensure relatively higher bandwidth as well as enhanced quality of service (QoS) in both access and core network sections. The high-speed wireless links at the network peripherals will serve as a conducive platform for device-to-device (D2D) communication. D2D driven applications and services can only be effective as well as secure assuming the associated machine type communication devices (MTCDs) have been successfully verified and authenticated. Typically, D2D type services and applications involve the interaction of several MTCDs in a group. As such, secure and effective D2D group-based authentication and key agreement (AKA) protocols are necessary. They need to inherently achieve efficacy in maintaining the group key unlink-ability as well as generate minimal signalling overheads that otherwise may lead to network congestion. In this paper we detail a secure and efficient Group AKA (Gr-AKA) protocol for D2D communication. Its performance is compared to that of existing similar protocols and is found to comparably lower both computational as well as signalling overhead requirements. Overall the analysis shows that the Gr-AKA protocol improves performance in terms of fulfilling D2D communication’s security requirements.","PeriodicalId":277315,"journal":{"name":"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Services and Applications Security in IoT Enabled Networks\",\"authors\":\"Philani M. Khumalo, B. Nleya, A. Gomba, A. Mutsvangwa\",\"doi\":\"10.1109/ICONIC.2018.8601298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G wireless together with optical backbone networks are expected to be the main pillars of the envisaged next /future generation networking (N/FGN) infrastructures. This is an impetus to practical realization of an IoT network that will support and ensure relatively higher bandwidth as well as enhanced quality of service (QoS) in both access and core network sections. The high-speed wireless links at the network peripherals will serve as a conducive platform for device-to-device (D2D) communication. D2D driven applications and services can only be effective as well as secure assuming the associated machine type communication devices (MTCDs) have been successfully verified and authenticated. Typically, D2D type services and applications involve the interaction of several MTCDs in a group. As such, secure and effective D2D group-based authentication and key agreement (AKA) protocols are necessary. They need to inherently achieve efficacy in maintaining the group key unlink-ability as well as generate minimal signalling overheads that otherwise may lead to network congestion. In this paper we detail a secure and efficient Group AKA (Gr-AKA) protocol for D2D communication. Its performance is compared to that of existing similar protocols and is found to comparably lower both computational as well as signalling overhead requirements. Overall the analysis shows that the Gr-AKA protocol improves performance in terms of fulfilling D2D communication’s security requirements.\",\"PeriodicalId\":277315,\"journal\":{\"name\":\"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIC.2018.8601298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIC.2018.8601298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

5G无线和光骨干网预计将成为设想的下一代/下一代网络(N/FGN)基础设施的主要支柱。这将推动物联网网络的实际实现,该网络将支持并确保相对较高的带宽,并在接入网段和核心网段提高服务质量(QoS)。网络外设的高速无线链路将作为设备对设备(D2D)通信的有利平台。D2D驱动的应用程序和服务只有在相关的机器类型通信设备(mtcd)已经成功验证和认证的前提下才能有效和安全。通常,D2D类型的服务和应用程序涉及组中几个mtcd的交互。因此,安全有效的基于D2D组的身份验证和密钥协议(AKA)协议是必要的。它们需要在保持组密钥不链接能力方面达到固有的有效性,并产生最小的信号开销,否则可能导致网络拥塞。本文详细介绍了一种安全高效的D2D通信组AKA (Gr-AKA)协议。将其性能与现有的类似协议进行比较,发现其计算和信令开销要求都相对较低。总的来说,分析表明Gr-AKA协议在满足D2D通信的安全需求方面提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Services and Applications Security in IoT Enabled Networks
5G wireless together with optical backbone networks are expected to be the main pillars of the envisaged next /future generation networking (N/FGN) infrastructures. This is an impetus to practical realization of an IoT network that will support and ensure relatively higher bandwidth as well as enhanced quality of service (QoS) in both access and core network sections. The high-speed wireless links at the network peripherals will serve as a conducive platform for device-to-device (D2D) communication. D2D driven applications and services can only be effective as well as secure assuming the associated machine type communication devices (MTCDs) have been successfully verified and authenticated. Typically, D2D type services and applications involve the interaction of several MTCDs in a group. As such, secure and effective D2D group-based authentication and key agreement (AKA) protocols are necessary. They need to inherently achieve efficacy in maintaining the group key unlink-ability as well as generate minimal signalling overheads that otherwise may lead to network congestion. In this paper we detail a secure and efficient Group AKA (Gr-AKA) protocol for D2D communication. Its performance is compared to that of existing similar protocols and is found to comparably lower both computational as well as signalling overhead requirements. Overall the analysis shows that the Gr-AKA protocol improves performance in terms of fulfilling D2D communication’s security requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信