基于方面的多层次情感信息对比词典

Myint Zaw, Pichaya Tandayya
{"title":"基于方面的多层次情感信息对比词典","authors":"Myint Zaw, Pichaya Tandayya","doi":"10.4018/ijisss.2022010103","DOIUrl":null,"url":null,"abstract":"The customer feedbacks provide alternative and important sources to discover knowledge supporting the marketers and customers to make better decisions. However, the manual process to extract useful information depends on domain experts. This paper focuses on improving the performance of the automatic sentiment information extraction from customer feedbacks. The article proposes a new extraction method that consider multiple dimensions of feedback information, aspect, word, contrast, sentence or phrase, and document levels. The aspect-based sentiment extraction uses a named entity recognition technique to extract the desired aspects of a target product. The aspect-based sentiment combines with sentiment information from multiple levels of feedback contexts resulting in the fused sentiment information improves the extraction performance. We validate the effectiveness by measuring the accuracy of the sentiment and aspect recognition methods comparing with SentiStrength and Word-Count. This information gives some insights on customer satisfaction and can be applied in an alarming tool.","PeriodicalId":151306,"journal":{"name":"Int. J. Inf. Syst. Serv. Sect.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-Based and Multi-Level Sentiment Information Applying Contrast Dictionary\",\"authors\":\"Myint Zaw, Pichaya Tandayya\",\"doi\":\"10.4018/ijisss.2022010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The customer feedbacks provide alternative and important sources to discover knowledge supporting the marketers and customers to make better decisions. However, the manual process to extract useful information depends on domain experts. This paper focuses on improving the performance of the automatic sentiment information extraction from customer feedbacks. The article proposes a new extraction method that consider multiple dimensions of feedback information, aspect, word, contrast, sentence or phrase, and document levels. The aspect-based sentiment extraction uses a named entity recognition technique to extract the desired aspects of a target product. The aspect-based sentiment combines with sentiment information from multiple levels of feedback contexts resulting in the fused sentiment information improves the extraction performance. We validate the effectiveness by measuring the accuracy of the sentiment and aspect recognition methods comparing with SentiStrength and Word-Count. This information gives some insights on customer satisfaction and can be applied in an alarming tool.\",\"PeriodicalId\":151306,\"journal\":{\"name\":\"Int. J. Inf. Syst. Serv. Sect.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Syst. Serv. Sect.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisss.2022010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Serv. Sect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisss.2022010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

客户反馈为发现支持营销人员和客户做出更好决策的知识提供了替代的和重要的来源。然而,人工提取有用信息的过程依赖于领域专家。本文主要研究如何提高客户反馈情感信息自动提取的性能。本文提出了一种考虑反馈信息、方面、词、对比、句子或短语、文档层次等多维度的提取方法。基于方面的情感提取使用命名实体识别技术来提取目标产品所需的方面。基于方面的情感与来自多层次反馈上下文的情感信息相结合,形成融合的情感信息,提高了情感信息的提取性能。我们通过测量情感和方面识别方法与SentiStrength和Word-Count方法的准确性来验证有效性。这些信息提供了一些关于客户满意度的见解,可以应用于警报工具中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-Based and Multi-Level Sentiment Information Applying Contrast Dictionary
The customer feedbacks provide alternative and important sources to discover knowledge supporting the marketers and customers to make better decisions. However, the manual process to extract useful information depends on domain experts. This paper focuses on improving the performance of the automatic sentiment information extraction from customer feedbacks. The article proposes a new extraction method that consider multiple dimensions of feedback information, aspect, word, contrast, sentence or phrase, and document levels. The aspect-based sentiment extraction uses a named entity recognition technique to extract the desired aspects of a target product. The aspect-based sentiment combines with sentiment information from multiple levels of feedback contexts resulting in the fused sentiment information improves the extraction performance. We validate the effectiveness by measuring the accuracy of the sentiment and aspect recognition methods comparing with SentiStrength and Word-Count. This information gives some insights on customer satisfaction and can be applied in an alarming tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信