支持大型档案协作注释的逆戟鲸呼叫检索策略

S. Ness, Alexander Lerch, G. Tzanetakis
{"title":"支持大型档案协作注释的逆戟鲸呼叫检索策略","authors":"S. Ness, Alexander Lerch, G. Tzanetakis","doi":"10.1109/MMSP.2011.6093798","DOIUrl":null,"url":null,"abstract":"The Orchive is a large audio archive of hydrophone recordings of Killer whale (Orcinus orca) vocalizations. Researchers and users from around the world can interact with the archive using a collaborative web-based annotation, visualization and retrieval interface. In addition a mobile client has been written in order to crowdsource Orca call annotation. In this paper we describe and compare different strategies for the retrieval of discrete Orca calls. In addition, the results of the automatic analysis are integrated in the user interface facilitating annotation as well as leveraging the existing annotations for supervised learning. The best strategy achieves a mean average precision of 0.77 with the first retrieved item being relevant 95% of the time in a dataset of 185 calls belonging to 4 types.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for orca call retrieval to support collaborative annotation of a large archive\",\"authors\":\"S. Ness, Alexander Lerch, G. Tzanetakis\",\"doi\":\"10.1109/MMSP.2011.6093798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Orchive is a large audio archive of hydrophone recordings of Killer whale (Orcinus orca) vocalizations. Researchers and users from around the world can interact with the archive using a collaborative web-based annotation, visualization and retrieval interface. In addition a mobile client has been written in order to crowdsource Orca call annotation. In this paper we describe and compare different strategies for the retrieval of discrete Orca calls. In addition, the results of the automatic analysis are integrated in the user interface facilitating annotation as well as leveraging the existing annotations for supervised learning. The best strategy achieves a mean average precision of 0.77 with the first retrieved item being relevant 95% of the time in a dataset of 185 calls belonging to 4 types.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

兰花是虎鲸(Orcinus orca)发声的水听器录音的大型音频档案。来自世界各地的研究人员和用户可以使用基于web的协作注释、可视化和检索界面与档案进行交互。此外,还编写了一个移动客户端,以便众包Orca呼叫注释。在本文中,我们描述并比较了不同的策略,以检索离散虎鲸呼叫。此外,自动分析的结果集成在用户界面中,促进注释,并利用现有的注释进行监督学习。最佳策略的平均精度为0.77,在属于4种类型的185个呼叫的数据集中,第一个检索项的相关性为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for orca call retrieval to support collaborative annotation of a large archive
The Orchive is a large audio archive of hydrophone recordings of Killer whale (Orcinus orca) vocalizations. Researchers and users from around the world can interact with the archive using a collaborative web-based annotation, visualization and retrieval interface. In addition a mobile client has been written in order to crowdsource Orca call annotation. In this paper we describe and compare different strategies for the retrieval of discrete Orca calls. In addition, the results of the automatic analysis are integrated in the user interface facilitating annotation as well as leveraging the existing annotations for supervised learning. The best strategy achieves a mean average precision of 0.77 with the first retrieved item being relevant 95% of the time in a dataset of 185 calls belonging to 4 types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信