3T1D记忆体的经验性能模型

Kristen Lovin, Benjamin C. Lee, Xiaoyao Liang, D. Brooks, Gu-Yeon Wei
{"title":"3T1D记忆体的经验性能模型","authors":"Kristen Lovin, Benjamin C. Lee, Xiaoyao Liang, D. Brooks, Gu-Yeon Wei","doi":"10.1109/ICCD.2009.5413124","DOIUrl":null,"url":null,"abstract":"Process variation poses a threat to the performance and reliability of the 6T SRAM cell. Research has turned to new memory cell designs, such as the 3T1D DRAM cell, as potential replacement designs. If designers are to consider 3T1D memory architectures, performance models are needed to better understand memory cell behavior. We propose a decoupled approach for collecting Monte Carlo HSPICE data, reducing simulation times by simulating memory array components separately based on their contribution to the worst-case critical path. We use this Monte Carlo data to train regression models, which accurately predict retention and access times of a 3T1D memory array with a median error of 7.39%.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"38 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Empirical performance models for 3T1D memories\",\"authors\":\"Kristen Lovin, Benjamin C. Lee, Xiaoyao Liang, D. Brooks, Gu-Yeon Wei\",\"doi\":\"10.1109/ICCD.2009.5413124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process variation poses a threat to the performance and reliability of the 6T SRAM cell. Research has turned to new memory cell designs, such as the 3T1D DRAM cell, as potential replacement designs. If designers are to consider 3T1D memory architectures, performance models are needed to better understand memory cell behavior. We propose a decoupled approach for collecting Monte Carlo HSPICE data, reducing simulation times by simulating memory array components separately based on their contribution to the worst-case critical path. We use this Monte Carlo data to train regression models, which accurately predict retention and access times of a 3T1D memory array with a median error of 7.39%.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"38 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

工艺变化对6T SRAM单元的性能和可靠性构成威胁。研究转向了新的存储单元设计,如3T1D DRAM单元,作为潜在的替代设计。如果设计人员要考虑3T1D内存架构,则需要性能模型来更好地理解内存单元的行为。我们提出了一种解耦的方法来收集蒙特卡罗HSPICE数据,通过根据内存阵列组件对最坏情况关键路径的贡献分别模拟内存阵列组件来减少模拟时间。我们使用蒙特卡罗数据训练回归模型,准确预测3T1D存储器阵列的保留和访问时间,中位数误差为7.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical performance models for 3T1D memories
Process variation poses a threat to the performance and reliability of the 6T SRAM cell. Research has turned to new memory cell designs, such as the 3T1D DRAM cell, as potential replacement designs. If designers are to consider 3T1D memory architectures, performance models are needed to better understand memory cell behavior. We propose a decoupled approach for collecting Monte Carlo HSPICE data, reducing simulation times by simulating memory array components separately based on their contribution to the worst-case critical path. We use this Monte Carlo data to train regression models, which accurately predict retention and access times of a 3T1D memory array with a median error of 7.39%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信