猪场环境传感器数据关联与热图分析——以译者的方式预测传感器剩余使用寿命

Jihoon Lee, Seungmin Oh, Yeonggwang Kim, Dongsu Lee, Akm Ashiquzzaman, Jinsul Kim
{"title":"猪场环境传感器数据关联与热图分析——以译者的方式预测传感器剩余使用寿命","authors":"Jihoon Lee, Seungmin Oh, Yeonggwang Kim, Dongsu Lee, Akm Ashiquzzaman, Jinsul Kim","doi":"10.1145/3426020.3426136","DOIUrl":null,"url":null,"abstract":"Various smart farm technologies are currently being developed around the world to enhance agricultural competitiveness. Korea is also speeding up the development of Korean smart farm technology suitable for domestic environment, but it is difficult to develop high-reliability sensors and systems, and has problems such as preventing sensors from failing, so in this paper, environmental data values such as temperature, humidity, carbon dioxide, ammonia, etc. are sensed, refined, and pretreated to derive correlation and heat maps between sensors. This will not only predict the RUL (Remaining Useful Life) of the sensor using machine learning in the future, but also develop a reliable system by detecting failures and errors.","PeriodicalId":305132,"journal":{"name":"The 9th International Conference on Smart Media and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pig Farm Environment Sensor Data Correlation and Heatmap Analysis for Predicting Sensor Remaining Useful Life✱\",\"authors\":\"Jihoon Lee, Seungmin Oh, Yeonggwang Kim, Dongsu Lee, Akm Ashiquzzaman, Jinsul Kim\",\"doi\":\"10.1145/3426020.3426136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various smart farm technologies are currently being developed around the world to enhance agricultural competitiveness. Korea is also speeding up the development of Korean smart farm technology suitable for domestic environment, but it is difficult to develop high-reliability sensors and systems, and has problems such as preventing sensors from failing, so in this paper, environmental data values such as temperature, humidity, carbon dioxide, ammonia, etc. are sensed, refined, and pretreated to derive correlation and heat maps between sensors. This will not only predict the RUL (Remaining Useful Life) of the sensor using machine learning in the future, but also develop a reliable system by detecting failures and errors.\",\"PeriodicalId\":305132,\"journal\":{\"name\":\"The 9th International Conference on Smart Media and Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th International Conference on Smart Media and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3426020.3426136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426020.3426136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,世界各地正在开发各种智能农场技术,以提高农业竞争力。韩国也在加快开发适合国内环境的韩式智能农场技术,但难以开发出高可靠性的传感器和系统,并且存在防止传感器失效等问题,因此本文通过对温度、湿度、二氧化碳、氨等环境数据值进行传感、细化、预处理,得出传感器之间的相关性和热图。这不仅可以预测未来使用机器学习的传感器的RUL(剩余使用寿命),还可以通过检测故障和错误来开发可靠的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pig Farm Environment Sensor Data Correlation and Heatmap Analysis for Predicting Sensor Remaining Useful Life✱
Various smart farm technologies are currently being developed around the world to enhance agricultural competitiveness. Korea is also speeding up the development of Korean smart farm technology suitable for domestic environment, but it is difficult to develop high-reliability sensors and systems, and has problems such as preventing sensors from failing, so in this paper, environmental data values such as temperature, humidity, carbon dioxide, ammonia, etc. are sensed, refined, and pretreated to derive correlation and heat maps between sensors. This will not only predict the RUL (Remaining Useful Life) of the sensor using machine learning in the future, but also develop a reliable system by detecting failures and errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信