基于深度学习神经网络的喷墨平台打印参数与实现电性能及几何参数相关性研究

P. Lall, Tony Thomas, Kartik Goyal, Scott Miller
{"title":"基于深度学习神经网络的喷墨平台打印参数与实现电性能及几何参数相关性研究","authors":"P. Lall, Tony Thomas, Kartik Goyal, Scott Miller","doi":"10.1109/iTherm54085.2022.9899526","DOIUrl":null,"url":null,"abstract":"The use of printed electronics is increasing rapidly and replacing the traditional manufacturing techniques, especially in the consumer electronics sector. In this paper, a closed-loop deep learning approach for correlation of the print parameters with realized electrical performance and geometry estimations on an ink-jet platform is modeled. To print reliable and very fine conductive traces, an estimation of the changes in the print parameters and the realized print dimension is necessary. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. This is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are identified, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and printing characteristics. This closed-loop system employs a print characteristics sensing system using a camera, a deep learning neural network regression model to predict the new print parameters, and an auto-update system that changes the values in the printing software. These combinations of the system are used to correlate the print parameters with the realized electrical performance and geometry of the print on an ink-jet printing platform.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Neural Network Approach for Correlation between Print Parameters and Realized Electrical Performance and Geometry on Ink-Jet Platform\",\"authors\":\"P. Lall, Tony Thomas, Kartik Goyal, Scott Miller\",\"doi\":\"10.1109/iTherm54085.2022.9899526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of printed electronics is increasing rapidly and replacing the traditional manufacturing techniques, especially in the consumer electronics sector. In this paper, a closed-loop deep learning approach for correlation of the print parameters with realized electrical performance and geometry estimations on an ink-jet platform is modeled. To print reliable and very fine conductive traces, an estimation of the changes in the print parameters and the realized print dimension is necessary. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. This is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are identified, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and printing characteristics. This closed-loop system employs a print characteristics sensing system using a camera, a deep learning neural network regression model to predict the new print parameters, and an auto-update system that changes the values in the printing software. These combinations of the system are used to correlate the print parameters with the realized electrical performance and geometry of the print on an ink-jet printing platform.\",\"PeriodicalId\":351706,\"journal\":{\"name\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iTherm54085.2022.9899526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印刷电子的使用正在迅速增加,并取代传统的制造技术,特别是在消费电子领域。在本文中,建立了一种闭环深度学习方法,用于打印参数与喷墨平台上实现的电性能和几何估计的相关性。为了打印可靠且非常精细的导电痕迹,有必要估计打印参数的变化和实现的打印尺寸。分析中使用的油墨有颗粒银油墨和无颗粒银油墨,并对两者进行了比较。闭环控制算法通过改变打印参数来达到所需的电气和几何值,而无需任何用户干预。这是通过一个自动打印参数传感系统实现的,该系统使用相机捕捉打印以识别相同的几何形状和尺寸。一旦确定了已实现的打印参数,基于这些参数的深度学习神经网络回归模型将用于预测所需的输入打印参数,这些参数用于实现所需的打印几何形状和尺寸。这些新的参数值传递给打印软件,以优化打印并获得所需的几何形状和打印特性。该闭环系统采用了一个使用摄像头的打印特性传感系统,一个深度学习神经网络回归模型来预测新的打印参数,以及一个自动更新系统来改变打印软件中的值。这些系统组合用于将打印参数与喷墨打印平台上实现的电气性能和打印几何形状相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Neural Network Approach for Correlation between Print Parameters and Realized Electrical Performance and Geometry on Ink-Jet Platform
The use of printed electronics is increasing rapidly and replacing the traditional manufacturing techniques, especially in the consumer electronics sector. In this paper, a closed-loop deep learning approach for correlation of the print parameters with realized electrical performance and geometry estimations on an ink-jet platform is modeled. To print reliable and very fine conductive traces, an estimation of the changes in the print parameters and the realized print dimension is necessary. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. This is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are identified, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and printing characteristics. This closed-loop system employs a print characteristics sensing system using a camera, a deep learning neural network regression model to predict the new print parameters, and an auto-update system that changes the values in the printing software. These combinations of the system are used to correlate the print parameters with the realized electrical performance and geometry of the print on an ink-jet printing platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信