基于标准的模糊故障树灰阶健康评估方法

P. Donnelly, L. Sturlaugson, J. Sheppard
{"title":"基于标准的模糊故障树灰阶健康评估方法","authors":"P. Donnelly, L. Sturlaugson, J. Sheppard","doi":"10.1109/AUTEST.2012.6334529","DOIUrl":null,"url":null,"abstract":"As part of a project to examine how current standards focused on test and diagnosis might be extended to address requirements for prognostics and health management, we have been exploring alternatives for incorporating facilities to represent gray-scale health information in the IEEE Std 1232 Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE). In this work, we extend the AI-ESTATE Common Element Model to provide “soft outcomes” on tests and diagnoses. We then demonstrate how to use these soft outcomes with the AI-ESTATE Fault Tree Model to implement a “fuzzy” fault tree. The resulting model then enables isolating faults within a system such that levels of degradation can also be tracked. In this paper, we describe the proposed extensions to AI-ESTATE as well as how those extensions work to implement a fuzzy fault tree using the demonstration circuit from previous Automatic Test Markup Language (ATML) demonstrations.","PeriodicalId":142978,"journal":{"name":"2012 IEEE AUTOTESTCON Proceedings","volume":"28 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A standards-based approach to gray-scale health assessment using fuzzy fault trees\",\"authors\":\"P. Donnelly, L. Sturlaugson, J. Sheppard\",\"doi\":\"10.1109/AUTEST.2012.6334529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of a project to examine how current standards focused on test and diagnosis might be extended to address requirements for prognostics and health management, we have been exploring alternatives for incorporating facilities to represent gray-scale health information in the IEEE Std 1232 Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE). In this work, we extend the AI-ESTATE Common Element Model to provide “soft outcomes” on tests and diagnoses. We then demonstrate how to use these soft outcomes with the AI-ESTATE Fault Tree Model to implement a “fuzzy” fault tree. The resulting model then enables isolating faults within a system such that levels of degradation can also be tracked. In this paper, we describe the proposed extensions to AI-ESTATE as well as how those extensions work to implement a fuzzy fault tree using the demonstration circuit from previous Automatic Test Markup Language (ATML) demonstrations.\",\"PeriodicalId\":142978,\"journal\":{\"name\":\"2012 IEEE AUTOTESTCON Proceedings\",\"volume\":\"28 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE AUTOTESTCON Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2012.6334529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE AUTOTESTCON Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2012.6334529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

作为一个项目的一部分,我们研究了当前的测试和诊断标准如何扩展,以满足预测和健康管理的要求,我们一直在探索在IEEE标准1232中纳入设备来表示灰度健康信息,用于所有测试环境的人工智能交换和服务(AI-ESTATE)标准。在这项工作中,我们扩展了AI-ESTATE公共元素模型,以提供测试和诊断的“软结果”。然后,我们演示了如何将这些软结果与AI-ESTATE故障树模型一起使用,以实现“模糊”故障树。然后,生成的模型可以隔离系统中的故障,从而也可以跟踪降级的级别。在本文中,我们描述了AI-ESTATE的拟议扩展,以及这些扩展如何使用先前自动测试标记语言(ATML)演示中的演示电路来实现模糊故障树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A standards-based approach to gray-scale health assessment using fuzzy fault trees
As part of a project to examine how current standards focused on test and diagnosis might be extended to address requirements for prognostics and health management, we have been exploring alternatives for incorporating facilities to represent gray-scale health information in the IEEE Std 1232 Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE). In this work, we extend the AI-ESTATE Common Element Model to provide “soft outcomes” on tests and diagnoses. We then demonstrate how to use these soft outcomes with the AI-ESTATE Fault Tree Model to implement a “fuzzy” fault tree. The resulting model then enables isolating faults within a system such that levels of degradation can also be tracked. In this paper, we describe the proposed extensions to AI-ESTATE as well as how those extensions work to implement a fuzzy fault tree using the demonstration circuit from previous Automatic Test Markup Language (ATML) demonstrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信