基于物联网数据的机器学习风险预测:在ESRD中的应用

Zeineb Fki, B. Ammar, Mounir Ben Ayed
{"title":"基于物联网数据的机器学习风险预测:在ESRD中的应用","authors":"Zeineb Fki, B. Ammar, Mounir Ben Ayed","doi":"10.1109/RCIS.2018.8406669","DOIUrl":null,"url":null,"abstract":"Connected objects are the key for many intelligent systems for instance, direct access to physical and physiological values and collecting information about the human body. Our research works aim to develop non-invasive methods that predict risk for dialysis patient in End-Stage Renal Disease (ESRD) at a smart home care system based on Internet of Things (IoT). However, the IoT components pose many new challenges in collecting more fine grained information called biomarkers. In this paper, we describe our work in progress to predict dialysis biomarkers from IoT sensors. To address this problem, we present our ongoing research to develop a modern data analytics environment using machine learning techniques. This paper gives also an overview about literature review and discusses open issues.","PeriodicalId":408651,"journal":{"name":"2018 12th International Conference on Research Challenges in Information Science (RCIS)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Machine learning with Internet of Things data for risk prediction: Application in ESRD\",\"authors\":\"Zeineb Fki, B. Ammar, Mounir Ben Ayed\",\"doi\":\"10.1109/RCIS.2018.8406669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected objects are the key for many intelligent systems for instance, direct access to physical and physiological values and collecting information about the human body. Our research works aim to develop non-invasive methods that predict risk for dialysis patient in End-Stage Renal Disease (ESRD) at a smart home care system based on Internet of Things (IoT). However, the IoT components pose many new challenges in collecting more fine grained information called biomarkers. In this paper, we describe our work in progress to predict dialysis biomarkers from IoT sensors. To address this problem, we present our ongoing research to develop a modern data analytics environment using machine learning techniques. This paper gives also an overview about literature review and discusses open issues.\",\"PeriodicalId\":408651,\"journal\":{\"name\":\"2018 12th International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 12th International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2018.8406669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2018.8406669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

连接对象是许多智能系统的关键,例如,直接访问物理和生理值以及收集有关人体的信息。我们的研究工作旨在开发基于物联网(IoT)的智能家居护理系统中预测终末期肾病(ESRD)透析患者风险的非侵入性方法。然而,物联网组件在收集更细粒度的信息(称为生物标志物)方面提出了许多新的挑战。在本文中,我们描述了我们正在进行的从物联网传感器预测透析生物标志物的工作。为了解决这个问题,我们提出了我们正在进行的研究,以开发一个使用机器学习技术的现代数据分析环境。本文还对文献综述进行了概述,并讨论了尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning with Internet of Things data for risk prediction: Application in ESRD
Connected objects are the key for many intelligent systems for instance, direct access to physical and physiological values and collecting information about the human body. Our research works aim to develop non-invasive methods that predict risk for dialysis patient in End-Stage Renal Disease (ESRD) at a smart home care system based on Internet of Things (IoT). However, the IoT components pose many new challenges in collecting more fine grained information called biomarkers. In this paper, we describe our work in progress to predict dialysis biomarkers from IoT sensors. To address this problem, we present our ongoing research to develop a modern data analytics environment using machine learning techniques. This paper gives also an overview about literature review and discusses open issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信