利用基于距离的定位系统中参考节点位置的不完善知识

M. Laaraiedh, S. Avrillon, B. Uguen
{"title":"利用基于距离的定位系统中参考节点位置的不完善知识","authors":"M. Laaraiedh, S. Avrillon, B. Uguen","doi":"10.1109/ICSCS.2009.5412689","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of uncertainty on reference nodes positions is addressed in the context of hybrid data fusion techniques for localization. This problem arises in B3G networks where different location-dependent observables come from heterogeneous Radio Access Networks (RAN) leading to different levels of uncertainty on both ranges and anchor nodes positions. We assume a Gaussian model on the node position error as well as on the ranging error. We derive novel Maximum Likelihood based location estimator which considers these two sources of uncertainty. The performances of this new estimator is then compared to the ML estimator which does not consider erroneous reference nodes positions. Monte Carlo simulations show that the proposed estimator achieves better performances especially in the context of short range positioning.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems\",\"authors\":\"M. Laaraiedh, S. Avrillon, B. Uguen\",\"doi\":\"10.1109/ICSCS.2009.5412689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of uncertainty on reference nodes positions is addressed in the context of hybrid data fusion techniques for localization. This problem arises in B3G networks where different location-dependent observables come from heterogeneous Radio Access Networks (RAN) leading to different levels of uncertainty on both ranges and anchor nodes positions. We assume a Gaussian model on the node position error as well as on the ranging error. We derive novel Maximum Likelihood based location estimator which considers these two sources of uncertainty. The performances of this new estimator is then compared to the ML estimator which does not consider erroneous reference nodes positions. Monte Carlo simulations show that the proposed estimator achieves better performances especially in the context of short range positioning.\",\"PeriodicalId\":126072,\"journal\":{\"name\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCS.2009.5412689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在混合数据融合定位技术的背景下,研究了参考节点位置的不确定性问题。这一问题出现在B3G网络中,其中来自异构无线接入网(RAN)的不同位置相关可观测值导致距离和锚节点位置的不确定性程度不同。我们假设节点位置误差和测距误差都是高斯模型。我们提出了一种新的基于极大似然的位置估计方法,它考虑了这两种不确定性来源。然后将这个新估计器的性能与不考虑错误参考节点位置的ML估计器进行比较。蒙特卡罗仿真结果表明,该估计器在近距离定位环境下具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems
In this paper, the problem of uncertainty on reference nodes positions is addressed in the context of hybrid data fusion techniques for localization. This problem arises in B3G networks where different location-dependent observables come from heterogeneous Radio Access Networks (RAN) leading to different levels of uncertainty on both ranges and anchor nodes positions. We assume a Gaussian model on the node position error as well as on the ranging error. We derive novel Maximum Likelihood based location estimator which considers these two sources of uncertainty. The performances of this new estimator is then compared to the ML estimator which does not consider erroneous reference nodes positions. Monte Carlo simulations show that the proposed estimator achieves better performances especially in the context of short range positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信