使用卷积神经网络的图像识别、分类和分析

R. R, G. R. Namita, Rohit Kulkarni
{"title":"使用卷积神经网络的图像识别、分类和分析","authors":"R. R, G. R. Namita, Rohit Kulkarni","doi":"10.1109/ICEEICT53079.2022.9768474","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive discussion and analysis of the various architectures of Convolutional Neural Networks for image classification. This paper intends to implement and analyze the performance of AlexNet, VGG16, VGG19 and ResNet50 as Image Classifiers on the dataset CIFAR10. Accuracy, Loss and Confusion Matrix were used as metrics to analyze the performance.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Recognition, Classification and Analysis Using Convolutional Neural Networks\",\"authors\":\"R. R, G. R. Namita, Rohit Kulkarni\",\"doi\":\"10.1109/ICEEICT53079.2022.9768474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive discussion and analysis of the various architectures of Convolutional Neural Networks for image classification. This paper intends to implement and analyze the performance of AlexNet, VGG16, VGG19 and ResNet50 as Image Classifiers on the dataset CIFAR10. Accuracy, Loss and Confusion Matrix were used as metrics to analyze the performance.\",\"PeriodicalId\":201910,\"journal\":{\"name\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT53079.2022.9768474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对用于图像分类的卷积神经网络的各种架构进行了全面的讨论和分析。本文拟在CIFAR10数据集上实现并分析AlexNet、VGG16、VGG19和ResNet50作为图像分类器的性能。准确度、损失和混淆矩阵被用作分析性能的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Recognition, Classification and Analysis Using Convolutional Neural Networks
This paper presents a comprehensive discussion and analysis of the various architectures of Convolutional Neural Networks for image classification. This paper intends to implement and analyze the performance of AlexNet, VGG16, VGG19 and ResNet50 as Image Classifiers on the dataset CIFAR10. Accuracy, Loss and Confusion Matrix were used as metrics to analyze the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信