{"title":"基于社会概率聚类的参数化空间查询处理","authors":"L. Tang, Haiquan Chen, Wei-Shinn Ku, Min-Te Sun","doi":"10.1145/2666310.2666428","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two parameterized frameworks, namely the Uniform Watchtower (UW) framework and the Hot zone-based Watchtower (HW) framework, for the evaluation of spatial queries on large road networks. The motivation of this research is twofold: (1) how to answer spatial queries efficiently on large road networks with massive POI data and (2) how to take advantage of social data in spatial query processing. In UW, the network traversal terminates once it acquires the Point of Interest (POI) distance information stored in watchtowers. In HW, by observing that users' movements often exhibit strong spatial patterns, we employ probabilistic clustering to model mobile user check-in data as a mixture of 2-dimensional Gaussian distributions to identify hot zones so that watchtowers can be deployed discriminatorily. Our analyses verify the superiority of HW over UW in terms of query response time.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameterized spatial query processing based on social probabilistic clustering\",\"authors\":\"L. Tang, Haiquan Chen, Wei-Shinn Ku, Min-Te Sun\",\"doi\":\"10.1145/2666310.2666428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two parameterized frameworks, namely the Uniform Watchtower (UW) framework and the Hot zone-based Watchtower (HW) framework, for the evaluation of spatial queries on large road networks. The motivation of this research is twofold: (1) how to answer spatial queries efficiently on large road networks with massive POI data and (2) how to take advantage of social data in spatial query processing. In UW, the network traversal terminates once it acquires the Point of Interest (POI) distance information stored in watchtowers. In HW, by observing that users' movements often exhibit strong spatial patterns, we employ probabilistic clustering to model mobile user check-in data as a mixture of 2-dimensional Gaussian distributions to identify hot zones so that watchtowers can be deployed discriminatorily. Our analyses verify the superiority of HW over UW in terms of query response time.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"186 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterized spatial query processing based on social probabilistic clustering
In this paper, we propose two parameterized frameworks, namely the Uniform Watchtower (UW) framework and the Hot zone-based Watchtower (HW) framework, for the evaluation of spatial queries on large road networks. The motivation of this research is twofold: (1) how to answer spatial queries efficiently on large road networks with massive POI data and (2) how to take advantage of social data in spatial query processing. In UW, the network traversal terminates once it acquires the Point of Interest (POI) distance information stored in watchtowers. In HW, by observing that users' movements often exhibit strong spatial patterns, we employ probabilistic clustering to model mobile user check-in data as a mixture of 2-dimensional Gaussian distributions to identify hot zones so that watchtowers can be deployed discriminatorily. Our analyses verify the superiority of HW over UW in terms of query response time.