预条件延拓模型预测控制

A. Knyazev, Y. Fujii, A. Malyshev
{"title":"预条件延拓模型预测控制","authors":"A. Knyazev, Y. Fujii, A. Malyshev","doi":"10.1137/1.9781611974072.15","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"41 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Preconditioned Continuation Model Predictive Control\",\"authors\":\"A. Knyazev, Y. Fujii, A. Malyshev\",\"doi\":\"10.1137/1.9781611974072.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"41 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

模型预测控制(MPC)预测未来事件,采取适当的控制措施。非线性MPC (NMPC)描述具有非线性模型和/或约束的系统。2004年T. Ohtsuka提出了一种NMPC的延拓/GMRES方法,该方法使用GMRES迭代算法在每个时间步上求解延拓NMPC (CNMPC)方程的正演差分逼近$Ax=b$。线性系统的系数矩阵$A$往往是病态的,导致GMRES收敛性差,减慢了CNMPC控制的在线计算速度,降低了控制质量。我们采用CNMPC来解决具有挑战性的最短时间问题,并通过引入有效的预处理、利用并行计算和用MINRES代替GMRES来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preconditioned Continuation Model Predictive Control
Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信