具有时序误差的噪声信道互信息率的边界

W. Zeng, Jitender Tokas, R. Motwani, A. Kavcic
{"title":"具有时序误差的噪声信道互信息率的边界","authors":"W. Zeng, Jitender Tokas, R. Motwani, A. Kavcic","doi":"10.1109/ISIT.2005.1523428","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the information rates of baseband linear filter channels with timing errors. We assume that the timing error can be modeled as a discrete-valued Markov process. Based on this assumption, we turn the channel into a finite-state machine model and show that the output sequence is an ergodic and asymptotically stationary hidden Markov process. We then propose Monte-Carlo methods to compute the upper and lower bounds on the information rate by utilizing the entropy ergodic theorem","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"25 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bounds on mutual information rates of noisy channels with timing errors\",\"authors\":\"W. Zeng, Jitender Tokas, R. Motwani, A. Kavcic\",\"doi\":\"10.1109/ISIT.2005.1523428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the information rates of baseband linear filter channels with timing errors. We assume that the timing error can be modeled as a discrete-valued Markov process. Based on this assumption, we turn the channel into a finite-state machine model and show that the output sequence is an ergodic and asymptotically stationary hidden Markov process. We then propose Monte-Carlo methods to compute the upper and lower bounds on the information rate by utilizing the entropy ergodic theorem\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"25 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文考虑了带时序误差的基带线性滤波器信道的信息率问题。我们假设时序误差可以用离散值马尔可夫过程来建模。基于这一假设,我们将信道转化为有限状态机模型,并证明了输出序列是一个遍历且渐近平稳的隐马尔可夫过程。然后利用熵遍历定理提出了蒙特卡罗方法来计算信息率的上界和下界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on mutual information rates of noisy channels with timing errors
In this paper, we consider the information rates of baseband linear filter channels with timing errors. We assume that the timing error can be modeled as a discrete-valued Markov process. Based on this assumption, we turn the channel into a finite-state machine model and show that the output sequence is an ergodic and asymptotically stationary hidden Markov process. We then propose Monte-Carlo methods to compute the upper and lower bounds on the information rate by utilizing the entropy ergodic theorem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信