{"title":"异构的迷你等级:自适应的,节能的内存架构","authors":"Kun Fang, Hongzhong Zheng, Zhichun Zhu","doi":"10.1109/ICPP.2010.11","DOIUrl":null,"url":null,"abstract":"Memory power consumption has become a big concern in server platforms. A recently proposed mini-rank architecture reduces the memory power consumption by breaking each DRAM rank into multiple narrow mini-ranks and activating fewer devices for each request. However, its fixed and uniform configuration may degrade performance significantly or lose power saving opportunities on some workloads. We propose a heterogeneous mini-rank design that sets the near-optimal configuration for each workload based on its memory access behavior and its memory bandwidth requirement. Compared with the original, homogeneous mini-rank design, the heterogeneous mini-rank design can balance between the performance and power saving and avoid large performance loss. For instance, for multiprogramming workloads with SPEC2000 application running on a quad-core system with two-channel DDR3-1066 memory, on average, the heterogeneous mini-rank can reduce the memory power by 53.1% (up to 60.8%) with the performance loss of 4.6% (up to 11.1%), compared with a conventional memory system. In comparison, the x32 homogeneous mini-rank can only save memory power by up to 29.8%; and the x8 homogeneous mini-rank will cause performance loss by up to 22.8%. Compared with x16 homogeneous mini-rank configuration, it can further reduce the EDP (energy-delay product) by up to 15.5% (10.0% on average).","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"50 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Heterogeneous Mini-rank: Adaptive, Power-Efficient Memory Architecture\",\"authors\":\"Kun Fang, Hongzhong Zheng, Zhichun Zhu\",\"doi\":\"10.1109/ICPP.2010.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory power consumption has become a big concern in server platforms. A recently proposed mini-rank architecture reduces the memory power consumption by breaking each DRAM rank into multiple narrow mini-ranks and activating fewer devices for each request. However, its fixed and uniform configuration may degrade performance significantly or lose power saving opportunities on some workloads. We propose a heterogeneous mini-rank design that sets the near-optimal configuration for each workload based on its memory access behavior and its memory bandwidth requirement. Compared with the original, homogeneous mini-rank design, the heterogeneous mini-rank design can balance between the performance and power saving and avoid large performance loss. For instance, for multiprogramming workloads with SPEC2000 application running on a quad-core system with two-channel DDR3-1066 memory, on average, the heterogeneous mini-rank can reduce the memory power by 53.1% (up to 60.8%) with the performance loss of 4.6% (up to 11.1%), compared with a conventional memory system. In comparison, the x32 homogeneous mini-rank can only save memory power by up to 29.8%; and the x8 homogeneous mini-rank will cause performance loss by up to 22.8%. Compared with x16 homogeneous mini-rank configuration, it can further reduce the EDP (energy-delay product) by up to 15.5% (10.0% on average).\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"50 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memory power consumption has become a big concern in server platforms. A recently proposed mini-rank architecture reduces the memory power consumption by breaking each DRAM rank into multiple narrow mini-ranks and activating fewer devices for each request. However, its fixed and uniform configuration may degrade performance significantly or lose power saving opportunities on some workloads. We propose a heterogeneous mini-rank design that sets the near-optimal configuration for each workload based on its memory access behavior and its memory bandwidth requirement. Compared with the original, homogeneous mini-rank design, the heterogeneous mini-rank design can balance between the performance and power saving and avoid large performance loss. For instance, for multiprogramming workloads with SPEC2000 application running on a quad-core system with two-channel DDR3-1066 memory, on average, the heterogeneous mini-rank can reduce the memory power by 53.1% (up to 60.8%) with the performance loss of 4.6% (up to 11.1%), compared with a conventional memory system. In comparison, the x32 homogeneous mini-rank can only save memory power by up to 29.8%; and the x8 homogeneous mini-rank will cause performance loss by up to 22.8%. Compared with x16 homogeneous mini-rank configuration, it can further reduce the EDP (energy-delay product) by up to 15.5% (10.0% on average).